Integral Control Barrier Functions for Dynamically Defined Control Laws

被引:36
作者
Ames, Aaron D. [1 ]
Notomista, Gennaro [2 ]
Wardi, Yorai [3 ]
Egerstedt, Magnus [3 ]
机构
[1] CALTECH, Dept Mech & Civil Engn Control & Dynam Syst, Pasadena, CA 91125 USA
[2] Georgia Tech, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA
[3] Georgia Tech, Sch Elect & Comp Engn, Atlanta, GA 30332 USA
来源
IEEE CONTROL SYSTEMS LETTERS | 2021年 / 5卷 / 03期
关键词
Constrained control; output regulation; control system architecture; QUADRATIC PROGRAMS; STATE;
D O I
10.1109/LCSYS.2020.3006764
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This letter introduces integral control barrier functions (I-CBFs) as a means to enable the safety-critical integral control of nonlinear systems. Importantly, I-CBFs allow for the holistic encoding of both state constraints and input bounds in a single framework. We demonstrate this by applying them to a dynamically defined tracking controller, thereby enforcing safety in state and input through a minimally invasive I-CBF controller framed as a quadratic program.
引用
收藏
页码:887 / 892
页数:6
相关论文
共 20 条
[1]  
Ames AD, 2019, 2019 18TH EUROPEAN CONTROL CONFERENCE (ECC), P3420, DOI [10.23919/ecc.2019.8796030, 10.23919/ECC.2019.8796030]
[2]   Control Barrier Function Based Quadratic Programs for Safety Critical Systems [J].
Ames, Aaron D. ;
Xu, Xiangru ;
Grizzle, Jessy W. ;
Tabuada, Paulo .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (08) :3861-3876
[3]  
Ames AD, 2014, IEEE DECIS CONTR P, P6271, DOI 10.1109/CDC.2014.7040372
[4]  
Boyd S., 2009, Convex Optimization, DOI DOI 10.1017/CBO9780511804441
[5]  
Freeman RA, 1995, PROCEEDINGS OF THE 34TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, P2245, DOI 10.1109/CDC.1995.480537
[6]   Nonlinear tracking control in the presence of state and control constraints: a generalized reference governor [J].
Gilbert, E ;
Kolmanovsky, I .
AUTOMATICA, 2002, 38 (12) :2063-2073
[7]   Guaranteed Vehicle Safety Control Using Control-Dependent Barrier Functions [J].
Huang, Yiwen ;
Yong, Sze Zheng ;
Chen, Yan .
2019 AMERICAN CONTROL CONFERENCE (ACC), 2019, :983-988
[8]   OUTPUT REGULATION OF NONLINEAR-SYSTEMS [J].
ISIDORI, A ;
BYRNES, CI .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1990, 35 (02) :131-140
[9]   Robust control barrier functions for constrained stabilization of nonlinear systems [J].
Jankovic, Mrdjan .
AUTOMATICA, 2018, 96 :359-367
[10]   Robust nonlinear integral control [J].
Jiang, ZP ;
Mareels, I .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2001, 46 (08) :1336-1342