The relaxation-time limit in the compressible Euler-Maxwell equations

被引:5
|
作者
Yang, Jianwei [1 ]
Wang, Shu [2 ]
Zhao, Juan [1 ]
机构
[1] N China Univ Water Resources & Elect Power, Coll Math & Informat Sci, Zhengzhou 450011, Peoples R China
[2] Beijing Univ Technol, Coll Appl Sci, Beijing 100022, Peoples R China
关键词
Euler-Maxwell equations; Relaxation time limit; Plasmas; Energy estimate; QUASI-NEUTRAL LIMIT; DRIFT-DIFFUSION EQUATIONS; POISSON SYSTEM; HYDRODYNAMIC MODEL; HYPERBOLIC SYSTEMS; SEMICONDUCTORS; CONVERGENCE;
D O I
10.1016/j.na.2011.07.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to study multidimensional Euler-Maxwell equations for plasmas with short momentum relaxation time. The convergence for the smooth solutions to the compressible Euler-Maxwell equations toward the solutions to the smooth solutions to the drift-diffusion equations is proved by means of the Maxwell iteration, as the relaxation time tends to zero. Meanwhile, the formal derivation of the latter from the former is justified. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:7005 / 7011
页数:7
相关论文
共 50 条
  • [41] Scaling limits of non-isentropic Euler-Maxwell equations for plasmas
    Jianwei Yang
    Qinghua Gao
    Qingnian Zhang
    Advances in Difference Equations, 2011
  • [42] The combined non-relativistic and quasi-neutral limit of two-fluid Euler-Maxwell equations
    Li, Yachun
    Peng, Yue-Jun
    Xi, Shuai
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (06): : 3249 - 3265
  • [43] Decay estimates of solutions to the bipolar non-isentropic compressible Euler-Maxwell system
    Tan, Zhong
    Wang, Yong
    Tong, Leilei
    NONLINEARITY, 2017, 30 (10) : 3743 - 3772
  • [44] THE ISOTHERMAL LIMIT FOR THE COMPRESSIBLE EULER EQUATIONS WITH DAMPING
    Chauleur, Quentin
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (12): : 7671 - 7687
  • [45] A note on incompressible limit for compressible Euler equations
    Xu, Jiang
    Yong, Wen-An
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2011, 34 (07) : 831 - 838
  • [46] GLOBAL EXISTENCE FOR THE EULER-MAXWELL SYSTEM
    Germain, Pierre
    Masmoudi, Nader
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2014, 47 (03): : 469 - 503
  • [47] Zero-Relaxation Limits of the Non-Isentropic Euler-Maxwell System for Well/Ill-Prepared Initial Data
    Feng, Yue-Hong
    Li, Xin
    Mei, Ming
    Wang, Shu
    JOURNAL OF NONLINEAR SCIENCE, 2023, 33 (05)
  • [48] Relaxation-time limit of the multidimensional bipolar hydrodynamic model in Besov space
    Li, Yeping
    Zhang, Ting
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 251 (11) : 3143 - 3162
  • [49] RELAXATION-TIME LIMIT IN THE ISOTHERMAL HYDRODYNAMIC MODEL FOR SEMICONDUCTORS
    Xu, Jiang
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2008, 40 (05) : 1979 - 1991
  • [50] Global non-relativistic quasi-neutral limit for a two-fluid Euler-Maxwell system
    Peng, Yue-Jun
    Liu, Cunming
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 385 : 362 - 394