The relaxation-time limit in the compressible Euler-Maxwell equations

被引:5
|
作者
Yang, Jianwei [1 ]
Wang, Shu [2 ]
Zhao, Juan [1 ]
机构
[1] N China Univ Water Resources & Elect Power, Coll Math & Informat Sci, Zhengzhou 450011, Peoples R China
[2] Beijing Univ Technol, Coll Appl Sci, Beijing 100022, Peoples R China
关键词
Euler-Maxwell equations; Relaxation time limit; Plasmas; Energy estimate; QUASI-NEUTRAL LIMIT; DRIFT-DIFFUSION EQUATIONS; POISSON SYSTEM; HYDRODYNAMIC MODEL; HYPERBOLIC SYSTEMS; SEMICONDUCTORS; CONVERGENCE;
D O I
10.1016/j.na.2011.07.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to study multidimensional Euler-Maxwell equations for plasmas with short momentum relaxation time. The convergence for the smooth solutions to the compressible Euler-Maxwell equations toward the solutions to the smooth solutions to the drift-diffusion equations is proved by means of the Maxwell iteration, as the relaxation time tends to zero. Meanwhile, the formal derivation of the latter from the former is justified. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:7005 / 7011
页数:7
相关论文
共 50 条
  • [31] Lp-Lq-Lr estimates and minimal decay regularity for compressible Euler-Maxwell equations
    Xu, Jiang
    Mori, Naofumi
    Kawashima, Shuichi
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 104 (05): : 965 - 981
  • [32] Low Mach number limit of the compressible Euler-Cattaneo-Maxwell equations
    Li, Fucai
    Zhang, Shuxing
    Zhang, Zhipeng
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (01):
  • [33] The rigorous derivation of unipolar Euler-Maxwell system for electrons from bipolar Euler-Maxwell system by infinity-ion-mass limit
    Zhao, Liang
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (05) : 3418 - 3440
  • [34] Initial layer and relaxation limit of non-isentropic compressible Euler equations with damping
    Wu, Fuzhou
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (06) : 5103 - 5127
  • [35] Approximations of Euler-Maxwell systems by drift-diffusion equations through zero-relaxation limits near the non-constant equilibrium
    Jin, Rui
    Li, Yachun
    Zhao, Liang
    SCIENCE CHINA-MATHEMATICS, 2024, : 1051 - 1078
  • [36] Global convergence rates in zero-relaxation limits for non-isentropic Euler-Maxwell equations
    Feng, Yue-Hong
    Li, Rui
    Mei, Ming
    Wang, Shu
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 414 : 372 - 404
  • [37] QUASINEUTRAL LIMIT FOR THE COMPRESSIBLE QUANTUM NAVIER-STOKES-MAXWELL EQUATIONS
    Li, Min
    Pu, Xueke
    Wang, Shu
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2018, 16 (02) : 363 - 391
  • [38] ON THE QUASINEUTRAL LIMIT FOR THE COMPRESSIBLE EULER-POISSON EQUATIONS
    Yang, Jianwei
    Li, Dongling
    Yang, Xiao
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (11): : 6797 - 6806
  • [39] Scaling limits of non-isentropic Euler-Maxwell equations for plasmas
    Yang, Jianwei
    Gao, Qinghua
    Zhang, Qingnian
    ADVANCES IN DIFFERENCE EQUATIONS, 2011,
  • [40] Stability of non-constant equilibrium solutions for Euler-Maxwell equations
    Peng, Yue-Jun
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 103 (01): : 39 - 67