The relaxation-time limit in the compressible Euler-Maxwell equations

被引:5
|
作者
Yang, Jianwei [1 ]
Wang, Shu [2 ]
Zhao, Juan [1 ]
机构
[1] N China Univ Water Resources & Elect Power, Coll Math & Informat Sci, Zhengzhou 450011, Peoples R China
[2] Beijing Univ Technol, Coll Appl Sci, Beijing 100022, Peoples R China
关键词
Euler-Maxwell equations; Relaxation time limit; Plasmas; Energy estimate; QUASI-NEUTRAL LIMIT; DRIFT-DIFFUSION EQUATIONS; POISSON SYSTEM; HYDRODYNAMIC MODEL; HYPERBOLIC SYSTEMS; SEMICONDUCTORS; CONVERGENCE;
D O I
10.1016/j.na.2011.07.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to study multidimensional Euler-Maxwell equations for plasmas with short momentum relaxation time. The convergence for the smooth solutions to the compressible Euler-Maxwell equations toward the solutions to the smooth solutions to the drift-diffusion equations is proved by means of the Maxwell iteration, as the relaxation time tends to zero. Meanwhile, the formal derivation of the latter from the former is justified. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:7005 / 7011
页数:7
相关论文
共 50 条
  • [21] Approximation of a compressible Euler-Poisson equations by a non-isentropic Euler-Maxwell equations
    Yang, Jianwei
    Wang, Shu
    Wang, Fuqiang
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (11) : 6142 - 6151
  • [22] Rigorous derivation of incompressible type Euler equations from non-isentropic Euler-Maxwell equations
    Yang, Jianwei
    Wang, Shu
    Li, Yong
    Luo, Dang
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (11) : 3613 - 3625
  • [23] The non-relativistic limit of Euler-Maxwell equations for two-fluid plasma
    Yang, Jianwei
    Wang, Shu
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (3-4) : 1829 - 1840
  • [24] Global existence and long-time behavior of smooth solutions of two-fluid Euler-Maxwell equations
    Peng, Yue-Jun
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2012, 29 (05): : 737 - 759
  • [25] RIGOROUS DERIVATION OF INCOMPRESSIBLE e-MHD EQUATIONS FROM COMPRESSIBLE EULER-MAXWELL EQUATIONS
    Peng, Yue-Jun
    Wang, Shu
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2008, 40 (02) : 540 - 565
  • [26] Relaxation-time limit in the multi-dimensional bipolar nonisentropic Euler-Poisson systems
    Li, Yeping
    Zhou, Zhiming
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 258 (10) : 3546 - 3566
  • [27] Global existence of classical solutions of full Euler-Maxwell equations
    Xu, Jiang
    Xiong, Jun
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 402 (02) : 545 - 557
  • [28] Convergence of a Singular Euler-Maxwell Approximation of the Incompressible Euler Equations
    Yang, Jianwei
    Wang, Hongli
    JOURNAL OF APPLIED MATHEMATICS, 2011,
  • [29] Non-relativistic limit of two-fluid Euler-Maxwell equations arising from plasma physics
    Yang, Jianwei
    Wang, Shu
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2009, 89 (12): : 981 - 994
  • [30] Relaxation limit in Besov spaces for compressible Euler equations
    Xu, Jiang
    Wang, Zejun
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2013, 99 (01): : 43 - 61