The relaxation-time limit in the compressible Euler-Maxwell equations

被引:5
|
作者
Yang, Jianwei [1 ]
Wang, Shu [2 ]
Zhao, Juan [1 ]
机构
[1] N China Univ Water Resources & Elect Power, Coll Math & Informat Sci, Zhengzhou 450011, Peoples R China
[2] Beijing Univ Technol, Coll Appl Sci, Beijing 100022, Peoples R China
关键词
Euler-Maxwell equations; Relaxation time limit; Plasmas; Energy estimate; QUASI-NEUTRAL LIMIT; DRIFT-DIFFUSION EQUATIONS; POISSON SYSTEM; HYDRODYNAMIC MODEL; HYPERBOLIC SYSTEMS; SEMICONDUCTORS; CONVERGENCE;
D O I
10.1016/j.na.2011.07.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to study multidimensional Euler-Maxwell equations for plasmas with short momentum relaxation time. The convergence for the smooth solutions to the compressible Euler-Maxwell equations toward the solutions to the smooth solutions to the drift-diffusion equations is proved by means of the Maxwell iteration, as the relaxation time tends to zero. Meanwhile, the formal derivation of the latter from the former is justified. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:7005 / 7011
页数:7
相关论文
共 50 条
  • [21] Global relaxation and nonrelativistic limit of nonisentropic Euler-Maxwell systems
    Chao, Na
    Yang, Yongfu
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (09) : 5692 - 5707
  • [22] Combined relaxation and non-relativistic limit of non-isentropic Euler-Maxwell equations
    Yang, Jianwei
    APPLICABLE ANALYSIS, 2015, 94 (04) : 747 - 760
  • [23] Approximation of a compressible Euler-Poisson equations by a non-isentropic Euler-Maxwell equations
    Yang, Jianwei
    Wang, Shu
    Wang, Fuqiang
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (11) : 6142 - 6151
  • [24] THE CAUCHY PROBLEM ON THE COMPRESSIBLE TWO-FLUIDS EULER-MAXWELL EQUATIONS
    Duan, Renjun
    Liu, Qingqing
    Zhu, Changjiang
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2012, 44 (01) : 102 - 133
  • [25] Compressible Euler-Maxwell limit for global smooth solutions to the Vlasov-Maxwell-Boltzmann system
    Duan, Renjun
    Yang, Dongcheng
    Yu, Hongjun
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2023, 33 (10): : 2157 - 2221
  • [26] Initial layers and zero-relaxation limits of Euler-Maxwell equations
    Hajjej, Mohamed-Lasmer
    Peng, Yue-Jun
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (02) : 1441 - 1465
  • [27] GLOBAL SMOOTH FLOWS FOR THE COMPRESSIBLE EULER-MAXWELL SYSTEM. THE RELAXATION CASE
    Duan, Renjun
    JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2011, 8 (02) : 375 - 413
  • [28] QUASINEUTRAL LIMIT FOR THE COMPRESSIBLE TWO-FLUID EULER-MAXWELL EQUATIONS FOR WELL-PREPARED INITIAL DATA
    Li, Min
    Pu, Xueke
    Wang, Shu
    ELECTRONIC RESEARCH ARCHIVE, 2020, 28 (02): : 879 - 895
  • [29] Zero dielectric constant limit to the non-isentropic compressible Euler-Maxwell system
    JIANG Song
    LI FuCai
    ScienceChina(Mathematics), 2015, 58 (01) : 61 - 76
  • [30] WKB asymptotics for the Euler-Maxwell equations
    Texier, B
    ASYMPTOTIC ANALYSIS, 2005, 42 (3-4) : 211 - 250