The relaxation-time limit in the compressible Euler-Maxwell equations

被引:5
|
作者
Yang, Jianwei [1 ]
Wang, Shu [2 ]
Zhao, Juan [1 ]
机构
[1] N China Univ Water Resources & Elect Power, Coll Math & Informat Sci, Zhengzhou 450011, Peoples R China
[2] Beijing Univ Technol, Coll Appl Sci, Beijing 100022, Peoples R China
关键词
Euler-Maxwell equations; Relaxation time limit; Plasmas; Energy estimate; QUASI-NEUTRAL LIMIT; DRIFT-DIFFUSION EQUATIONS; POISSON SYSTEM; HYDRODYNAMIC MODEL; HYPERBOLIC SYSTEMS; SEMICONDUCTORS; CONVERGENCE;
D O I
10.1016/j.na.2011.07.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to study multidimensional Euler-Maxwell equations for plasmas with short momentum relaxation time. The convergence for the smooth solutions to the compressible Euler-Maxwell equations toward the solutions to the smooth solutions to the drift-diffusion equations is proved by means of the Maxwell iteration, as the relaxation time tends to zero. Meanwhile, the formal derivation of the latter from the former is justified. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:7005 / 7011
页数:7
相关论文
共 50 条
  • [11] The diffusive relaxation limit of non-isentropic Euler-Maxwell equations for plasmas
    Yang, Jianwei
    Wang, Shu
    Li, Yong
    Luo, Dang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 380 (01) : 343 - 353
  • [12] ASYMPTOTIC EXPANSIONS IN TWO-FLUID COMPRESSIBLE EULER-MAXWELL EQUATIONS WITH SMALL PARAMETERS
    Peng, Yue-Jun
    Wang, Shu
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2009, 23 (1-2) : 415 - 433
  • [13] Convergence of Compressible Euler-Maxwell Equations to Compressible Euler-Poisson Equations*
    Yuejun Peng
    Shu Wang
    Chinese Annals of Mathematics, Series B, 2007, 28 : 583 - 602
  • [14] Convergence of compressible Euler-Maxwell equations to compressible Euler-Poisson equations
    Peng, Yuejun
    Wang, Shu
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2007, 28 (05) : 583 - 602
  • [15] Convergence of the Euler-Maxwell two-fluid system to compressible Euler equations
    Yang, Jianwei
    Wang, Shu
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 417 (02) : 889 - 903
  • [16] Convergence of Compressible Euler-Maxwell Equations to Compressible Euler-Poisson Equations
    Yuejun PENG~* Shu WANG~(**) ~*Laboratoire de Mathématiques
    ChineseAnnalsofMathematics, 2007, (05) : 583 - 602
  • [17] From quantum Euler-Maxwell equations to incompressible Euler equations
    Yang, Jianwei
    Ju, Zhiping
    APPLICABLE ANALYSIS, 2015, 94 (11) : 2201 - 2210
  • [18] A new characterization of the dissipation structure and the relaxation limit for the compressible Euler-Maxwell system
    Crin-Barat, Timothee
    Peng, Yue-Jun
    Shou, Ling-Yun
    Xu, Jiang
    JOURNAL OF FUNCTIONAL ANALYSIS, 2025, 289 (02)
  • [19] QUASINEUTRAL LIMIT FOR THE COMPRESSIBLE TWO-FLUID EULER-MAXWELL EQUATIONS FOR WELL-PREPARED INITIAL DATA
    Li, Min
    Pu, Xueke
    Wang, Shu
    ELECTRONIC RESEARCH ARCHIVE, 2020, 28 (02): : 879 - 895
  • [20] Global relaxation and nonrelativistic limit of nonisentropic Euler-Maxwell systems
    Chao, Na
    Yang, Yongfu
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (09) : 5692 - 5707