High-Performance Aqueous Zinc-Ion Batteries Realized by MOF Materials

被引:260
作者
Pu, Xuechao [1 ,2 ]
Jiang, Baozheng [1 ,3 ]
Wang, Xianli [1 ]
Liu, Wenbao [1 ,2 ]
Dong, Liubing [4 ]
Kang, Feiyu [1 ,2 ]
Xu, Chengjun [1 ]
机构
[1] Tsinghua Univ, Shenzhen Geim Graphene Ctr, Tsinghua Shenzhen Int Grad Sch, Shenzhen 518055, Peoples R China
[2] Tsinghua Univ, Sch Mat Sci & Engn, State Key Lab New Ceram & Fine Proc, Beijing 100084, Peoples R China
[3] Tsinghua Univ, Tsinghua Berkeley Shenzhen Inst TBSI, Shenzhen 518055, Peoples R China
[4] Jinan Univ, Coll Chem & Mat Sci, Guangzhou 511443, Peoples R China
基金
对外科技合作项目(国际科技项目);
关键词
Zinc-ion battery; Metal-organic framework; Cathode material; Zn anode; METAL-ORGANIC FRAMEWORKS; HIGH-CAPACITY; ENERGY-STORAGE; RECHARGEABLE BATTERIES; CATHODE MATERIALS; LONG-LIFE; ANODE; ELECTROLYTE; TEMPERATURE; NANOSHEETS;
D O I
10.1007/s40820-020-00487-1
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Rechargeable aqueous zinc-ion batteries (ZIBs) have been gaining increasing interest for large-scale energy storage applications due to their high safety, good rate capability, and low cost. However, the further development of ZIBs is impeded by two main challenges: Currently reported cathode materials usually suffer from rapid capacity fading or high toxicity, and meanwhile, unstable zinc stripping/plating on Zn anode seriously shortens the cycling life of ZIBs. In this paper, metal-organic framework (MOF) materials are proposed to simultaneously address these issues and realize high-performance ZIBs with Mn(BTC) MOF cathodes and ZIF-8-coated Zn (ZIF-8@Zn) anodes. Various MOF materials were synthesized, and Mn(BTC) MOF was found to exhibit the best Zn2+-storage ability with a capacity of 112 mAh g(-1). Zn(2+)storage mechanism of the Mn(BTC) was carefully studied. Besides, ZIF-8@Zn anodes were prepared by coating ZIF-8 MOF material on Zn foils. Unique porous structure of the ZIF-8 coating guided uniform Zn stripping/plating on the surface of Zn anodes. As a result, the ZIF-8@Zn anodes exhibited stable Zn stripping/plating behaviors, with 8 times longer cycle life than bare Zn foils. Based on the above, high-performance aqueous ZIBs were constructed using the Mn(BTC) cathodes and the ZIF-8@Zn anodes, which displayed an excellent long-cycling stability without obvious capacity fading after 900 charge/discharge cycles. This work provides a new opportunity for high-performance energy storage system.
引用
收藏
页数:15
相关论文
共 82 条
[1]   Electrochemical Zinc Intercalation in Lithium Vanadium Oxide: A High-Capacity Zinc-Ion Battery Cathode [J].
Alfaruqi, Muhammad H. ;
Mathew, Vinod ;
Song, Jinju ;
Kim, Sungjin ;
Islam, Saiful ;
Pham, Duong Tung ;
Jo, Jeonggeun ;
Kim, Seokhun ;
Baboo, Joseph Paul ;
Xiu, Zhiliang ;
Lee, Kug-Seung ;
Sun, Yang-Kook ;
Kim, Jaekook .
CHEMISTRY OF MATERIALS, 2017, 29 (04) :1684-1694
[2]  
Augustyn V, 2013, NAT MATER, V12, P518, DOI [10.1038/NMAT3601, 10.1038/nmat3601]
[3]   Pilotaxitic Na1.1V3O7.9 nanoribbons/graphene as high-performance sodium ion battery and aqueous zinc ion battery cathode [J].
Cai, Yangsheng ;
Liu, Fei ;
Luo, Zhigao ;
Fang, Guozhao ;
Zhou, Jiang ;
Pan, Anqiang ;
Liang, Shuquan .
ENERGY STORAGE MATERIALS, 2018, 13 :168-174
[4]   Electrochemical Zinc-Ion Intercalation Properties and Crystal Structures of ZnMo6S8 and Zn2Mo6S8 Chevrel Phases in Aqueous Electrolytes [J].
Chae, Munseok S. ;
Heo, Jongwook W. ;
Lim, Sung-Chul ;
Hong, Seung-Tae .
INORGANIC CHEMISTRY, 2016, 55 (07) :3294-3301
[5]   Rechargeability of aqueous sulfate Zn/MnO2 batteries enhanced by accessible Mn2+ ions [J].
Chamoun, Mylad ;
Brant, William R. ;
Tai, Cheuk-Wai ;
Karlsson, Gunder ;
Noreus, Dag .
ENERGY STORAGE MATERIALS, 2018, 15 :351-360
[6]   A High-Rate and Stable Quasi-Solid-State Zinc-Ion Battery with Novel 2D Layered Zinc Orthovanadate Array [J].
Chao, Dongliang ;
Zhu, Changrong ;
Song, Ming ;
Liang, Pei ;
Zhang, Xiao ;
Nguyen Huy Tiep ;
Zhao, Haofei ;
Wang, John ;
Wang, Rongming ;
Zhang, Hua ;
Fan, Hong Jin .
ADVANCED MATERIALS, 2018, 30 (32)
[7]   A manganese-hydrogen battery with potential for grid-scale energy storage [J].
Chen, Wei ;
Li, Guodong ;
Pei, Allen ;
Li, Yuzhang ;
Liao, Lei ;
Wang, Hongxia ;
Wan, Jiayu ;
Liang, Zheng ;
Chen, Guangxu ;
Zhang, Hao ;
Wang, Jiangyan ;
Cui, Yi .
NATURE ENERGY, 2018, 3 (05) :428-435
[8]   Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review [J].
Cheng, Xin-Bing ;
Zhang, Rui ;
Zhao, Chen-Zi ;
Zhang, Qiang .
CHEMICAL REVIEWS, 2017, 117 (15) :10403-10473
[9]   Promise and reality of post-lithium-ion batteries with high energy densities [J].
Choi, Jang Wook ;
Aurbach, Doron .
NATURE REVIEWS MATERIALS, 2016, 1 (04)
[10]   Quasi-Isolated Au Particles as Heterogeneous Seeds To Guide Uniform Zn Deposition for Aqueous Zinc-Ion Batteries [J].
Cui, Mangwei ;
Xiao, Yan ;
Kang, Litao ;
Du, Wei ;
Gao, Yanfeng ;
Sun, Xueqin ;
Zhou, Yanli ;
Li, Xiangming ;
Li, Hongfei ;
Jiang, Fuyi ;
Zhi, Chunyi .
ACS APPLIED ENERGY MATERIALS, 2019, 2 (09) :6490-6496