Visualization of spin dynamics in single nanosized magnetic elements

被引:43
作者
Banholzer, A. [1 ,2 ,3 ]
Narkowicz, R. [4 ]
Hassel, C. [1 ,2 ,5 ]
Meckenstock, R. [1 ,2 ]
Stienen, S. [1 ,2 ]
Posth, O. [1 ,2 ]
Suter, D. [4 ]
Farle, M. [1 ,2 ]
Lindner, J. [1 ,2 ]
机构
[1] Univ Duisburg Essen, Fac Phys, D-47048 Duisburg, Germany
[2] Univ Duisburg Essen, CeNIDE, D-47048 Duisburg, Germany
[3] Helmholtz Zentrum Dresden Rossendorf, Inst Ion Beam Phys & Mat Res, D-01328 Dresden, Germany
[4] Tech Univ Dortmund, Dept Phys, D-44221 Dortmund, Germany
[5] SMS Siemag AG, D-40237 Dusseldorf, Germany
关键词
RESONANCE; MICROSCOPY; SPINWAVES; ELECTRON;
D O I
10.1088/0957-4484/22/29/295713
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The design of future spintronic devices requires a quantitative understanding of the microscopic linear and nonlinear spin relaxation processes governing the magnetization reversal in nanometer-scale ferromagnetic systems. Ferromagnetic resonance is the method of choice for a quantitative analysis of relaxation rates, magnetic anisotropy and susceptibility in a single experiment. The approach offers the possibility of coherent control and manipulation of nanoscaled structures by microwave irradiation. Here, we analyze the different excitation modes in a single nanometer-sized ferromagnetic stripe. Measurements are performed using a microresonator set-up which offers a sensitivity to quantitatively analyze the dynamic and static magnetic properties of single nanomagnets with volumes of (100 nm)(3). Uniform as well as non-uniform volume modes of the spin wave excitation spectrum are identified and found to be in excellent agreement with the results of micromagnetic simulations which allow the visualization of the spatial distribution of these modes in the nanostructures.
引用
收藏
页数:5
相关论文
共 17 条
[1]  
Demokritov SO, 2002, TOP APPL PHYS, V83, P65
[2]   Electronic spin detection in molecules using scanning-tunneling-microscopy-assisted electron-spin resonance [J].
Durkan, C ;
Welland, ME .
APPLIED PHYSICS LETTERS, 2002, 80 (03) :458-460
[3]   Ferromagnetic resonance of ultrathin metallic layers [J].
Farle, M .
REPORTS ON PROGRESS IN PHYSICS, 1998, 61 (07) :755-826
[4]   Scanning confocal optical microscopy and magnetic resonance on single defect centers [J].
Gruber, A ;
Drabenstedt, A ;
Tietz, C ;
Fleury, L ;
Wrachtrup, J ;
vonBorczyskowski, C .
SCIENCE, 1997, 276 (5321) :2012-2014
[5]   MAGNETIC-RESONANCE OF A SINGLE MOLECULAR SPIN [J].
KOHLER, J ;
DISSELHORST, JAJM ;
DONCKERS, MCJM ;
GROENEN, EJJ ;
SCHMIDT, J ;
MOERNER, WE .
NATURE, 1993, 363 (6426) :242-244
[6]   Magnetic Anisotropy of heterostructures [J].
Lindner, Jurgen ;
Farle, Michael .
MAGNETIC HETEROSTRUCTURES: ADVANCES AND PERSPECTIVE IN SPINSTRUCTURES AND SPINTRANSPORT, 2008, 227 :45-96
[7]   DIRECT OBSERVATION OF THE PRECESSION OF INDIVIDUAL PARAMAGNETIC SPINS ON OXIDIZED SILICON SURFACES [J].
MANASSEN, Y ;
HAMERS, RJ ;
DEMUTH, JE ;
CASTELLANO, AJ .
PHYSICAL REVIEW LETTERS, 1989, 62 (21) :2531-2534
[8]   Scaling of sensitivity and efficiency in planar microresonators for electron spin resonance [J].
Narkowicz, R. ;
Suter, D. ;
Niemeyer, I. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2008, 79 (08)
[9]   Planar microresonators for EPR experiments [J].
Narkowicz, R ;
Suter, D ;
Stonies, R .
JOURNAL OF MAGNETIC RESONANCE, 2005, 175 (02) :275-284
[10]   MAGNETIC EXCITATIONS IN SOLIDS [J].
PATTON, CE .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1984, 103 (05) :251-315