A separable deformation of the quaternion group algebra

被引:2
作者
Barnea, Nurit [1 ]
Ginosar, Yuval [1 ]
机构
[1] Univ Haifa, Dept Math, IL-31905 Haifa, Israel
关键词
D O I
10.1090/S0002-9939-08-09480-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Donald-Flanigan conjecture asserts that for any finite group G and any field k, the group algebra kG can be deformed to a separable algebra. The minimal unsolved instance, namely the quaternion group Q(8) over a field k of characteristic 2 was considered as a counterexample. We present here a separable deformation of kQ(8). In a sense, the conjecture for any finite group is open again.
引用
收藏
页码:2675 / 2681
页数:7
相关论文
共 12 条
[1]   DEFORMATION-THEORETIC VERSION OF MASCHKES-THEOREM FOR MODULAR GROUP ALGEBRAS - COMMUTATIVE CASE [J].
DONALD, JD ;
FLANIGAN, FJ .
JOURNAL OF ALGEBRA, 1974, 29 (01) :98-102
[2]   ON SEMISIMPLE DEFORMATIONS OF LOCAL SEMIDIHEDRAL ALGEBRAS [J].
ERDMANN, K .
ARCHIV DER MATHEMATIK, 1994, 63 (06) :481-487
[3]  
ERDMANN K, 1993, ISRAEL MATH C P, V7, P25
[4]   The modular version of Maschke's theorem for normal abelian p-Sylows [J].
Gerstenhaber, M ;
Schaps, ME .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1996, 108 (03) :257-264
[5]   ON DEFORMATION OF RINGS + ALGEBRAS [J].
GERSTENHABER, M .
ANNALS OF MATHEMATICS, 1964, 79 (01) :59-&
[6]   Hecke algebras, U(q)sl(n), and the Donald-Flanigan conjecture for S-n [J].
Gerstenhaber, M ;
Schaps, ME .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 349 (08) :3353-3371
[7]   The Donald-Flanigan problem for finite reflection groups -: To the memory of Moshe!Flato z"l [J].
Gerstenhaber, M ;
Giaquinto, A ;
Schaps, ME .
LETTERS IN MATHEMATICAL PHYSICS, 2001, 56 (01) :41-72
[8]  
Gerstenhaber M., 1998, CONT MATH, V229, P159
[9]  
HERSTEIN IN, 1968, NONCOMMUTATIVE RINGS
[10]  
McConnell J.C., 1987, NONCOMMUTATIVE NOETH