ANOTHER NOTE ON THE VON NEUMANN ALTERNATING PROJECTIONS ALGORITHM

被引:0
作者
Kopecka, Eva [1 ,2 ]
Reich, Simeon [3 ]
机构
[1] Acad Sci Czech Republic, Inst Math, CZ-11567 Prague, Czech Republic
[2] Johannes Kepler Univ Linz, Inst Anal, A-4040 Linz, Austria
[3] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
基金
以色列科学基金会;
关键词
Alternating orthogonal projections; Hilbert space; orthogonal decomposition;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present another elementary geometric proof of von Neumann's classical convergence theorem regarding alternating orthogonal projections in Hilbert space. In contrast with previous proofs, this time our argument is based on the two-dimensional case.
引用
收藏
页码:455 / 460
页数:6
相关论文
共 10 条
[1]  
[Anonymous], T AM MATH SOC, DOI DOI 10.2307/1990404
[2]   Projection and proximal point methods:: convergence results and counterexamples [J].
Bauschke, HH ;
Matousková, E ;
Reich, S .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 56 (05) :715-738
[3]  
Deutsch FR., 2012, Best Approximation in Inner Product Spaces
[4]   ON THE UNRESTRICTED ITERATION OF PROJECTIONS IN HILBERT-SPACE [J].
DYE, JM ;
REICH, S .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1991, 156 (01) :101-119
[5]  
Kirchheim B., MATH ANN IN PRESS
[6]  
Kopeck E., 2004, J. Nonlinear Convex Anal, V5, P379
[7]  
NAKANO H., 1953, SPECTRAL THEORY HILB
[8]  
Sakai M., 1995, APPL ANAL, V59, P109
[9]  
VONNEUMANN J, 1949, ANN MATH, V50, P401
[10]  
Wiener N., 1955, Commentarii Mathematici Helvetici, V29, P97, DOI DOI 10.1007/BF02564273