A multiscale model for avascular tumor growth

被引:281
|
作者
Jiang, Y
Pjesivac-Grbovic, J
Cantrell, C
Freyer, JP
机构
[1] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[2] Univ Tennessee, Dept Comp Sci, Knoxville, TN USA
[3] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[4] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM USA
关键词
D O I
10.1529/biophysj.105.060640
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
The desire to understand tumor complexity has given rise to mathematical models to describe the tumor microenvironment. We present a new mathematical model for avascular tumor growth and development that spans three distinct scales. At the cellular level, a lattice Monte Carlo model describes cellular dynamics (proliferation, adhesion, and viability). At the subcellular level, a Boolean network regulates the expression of proteins that control the cell cycle. At the extracellular level, reaction-diffusion equations describe the chemical dynamics (nutrient, waste, growth promoter, and inhibitor concentrations). Data from experiments with multicellular spheroids were used to determine the parameters of the simulations. Starting with a single tumor cell, this model produces an avascular tumor that quantitatively mimics experimental measurements in multicellular spheroids. Based on the simulations, we predict: 1), the microenvironmental conditions required for tumor cell survival; and 2), growth promoters and inhibitors have diffusion coefficients in the range between 10(-6) and 10(-7) cm(2)/ h, corresponding to molecules of size 80-90 kDa. Using the same parameters, the model also accurately predicts spheroid growth curves under different external nutrient supply conditions.
引用
收藏
页码:3884 / 3894
页数:11
相关论文
共 50 条
  • [1] A multiscale finite element model for avascular tumor growth
    Liu, Changyu
    Lu, Bin
    Li, Cong
    International Journal of Control and Automation, 2015, 8 (01): : 111 - 124
  • [2] A Multiscale Model for Hypoxia-induced Avascular Tumor Growth
    Gao, Xuefeng
    Tangney, Mark
    Tabirca, Sabin
    BIOSCIENCE, BIOCHEMISTRY AND BIOINFORMATICS, 2011, 5 : 53 - 58
  • [3] A multiscale model for avascular tumor growth. (vol 89, pg 3884, 2005)
    Jiang, Y
    Pjesivac-Grbovic, J
    Cantrell, C
    Freyer, JP
    BIOPHYSICAL JOURNAL, 2006, 91 (02) : 775 - 775
  • [4] On a Model for the Growth of an Invasive Avascular Tumor
    Avila, J. A. J.
    Lozada-Cruz, G.
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2013, 7 (05): : 1857 - 1863
  • [5] A multiscale mathematical model of avascular tumor growth to investigate the therapeutic benefit of anti-invasive agents
    Ribba, B.
    Saut, O.
    Colin, T.
    Bresch, D.
    Grenier, E.
    Boissel, J. P.
    JOURNAL OF THEORETICAL BIOLOGY, 2006, 243 (04) : 532 - 541
  • [6] A numerical algorithm for avascular tumor growth model
    Mahmood, Mohammed Shuker
    Mahmood, Silvia
    Dobrota, Dusan
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2010, 80 (06) : 1269 - 1277
  • [7] Multiscale models for the growth of avascular tumors
    Martins, M. L.
    Ferreira, S. C., Jr.
    Vilela, M. J.
    PHYSICS OF LIFE REVIEWS, 2007, 4 (02) : 128 - 156
  • [8] A chemical energy approach of avascular tumor growth: multiscale modeling and qualitative results
    Ampatzoglou, Pantelis
    Dassios, George
    Hadjinicolaou, Maria
    Kourea, Helen P.
    Vrahatis, Michael N.
    SPRINGERPLUS, 2015, 4 : 1 - 22
  • [9] Reaction-diffusion model for the growth of avascular tumor
    Ferreira, SC
    Martins, ML
    Vilela, MJ
    PHYSICAL REVIEW E, 2002, 65 (02):
  • [10] An Agent-Based Model of Avascular Tumor Growth
    Bobadilla, Ana Victoria Ponce
    Doursat, Rene
    Amblard, Francois
    ECAL 2015: THE THIRTEENTH EUROPEAN CONFERENCE ON ARTIFICIAL LIFE, 2015, : 648 - 655