A Chemical Strategy toward Novel Brain-Penetrant EZH2 Inhibitors

被引:11
作者
Liang, Rui [1 ]
Tomita, Daisuke [1 ]
Sasaki, Yusuke [1 ]
Ginn, John [1 ]
Michino, Mayako [1 ]
Huggins, David J. [1 ,2 ]
Baxt, Leigh [1 ]
Kargman, Stacia [1 ]
Shahid, Maaz [3 ,4 ,5 ]
Aso, Kazuyoshi [1 ]
Duggan, Mark [6 ]
Stamford, Andrew W. [1 ]
DeStanchina, Elisa [7 ]
Liverton, Nigel [1 ]
Meinke, Peter T. [1 ,8 ]
Foley, Michael A. [1 ]
Phillips, Richard E. [3 ,4 ,5 ]
机构
[1] Triinst Therapeut Discovery Inst, New York, NY 10021 USA
[2] Weill Cornell Med Coll, Dept Physiol & Biophys, New York, NY 10021 USA
[3] Univ Penn, Perelman Sch Med, Dept Neurol, Philadelphia, PA 19104 USA
[4] Perelman Sch Med, Epigenet Program, Philadelphia, PA 19104 USA
[5] Perelman Sch Med, Abramson Canc Ctr, Philadelphia, PA 19104 USA
[6] LifeSci Consulting LLC, Tequesta, FL 33469 USA
[7] Mem Sloan Kettering Canc Ctr, Mol Pharmacol Program, New York, NY 10065 USA
[8] Weill Cornell Med Coll, Dept Pharmacol, New York, NY 10021 USA
关键词
EZH2; inhibitor; cancer; epigenetics; BBB (blood brain barrier); central nervous system; HOMOLOG; 2; EZH2; SWI/SNF COMPLEXES; GENOME REGULATION; TARGETING EZH2; POLYCOMB; ENHANCER; DESIGN; IDENTIFICATION; METHYLATION; MUTATIONS;
D O I
10.1021/acsmedchemlett.1c00448
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Aberrant gene-silencing through dysregulation of polycomb protein activity has emerged as an important oncogenic mechanism in cancer, implicating polycomb proteins as important therapeutic targets. Recently, an inhibitor targeting EZH2, the methyltransferase component of PRC2, received U.S. Food and Drug Administration approval following promising clinical responses in cancer patients. However, the current array of EZH2 inhibitors have poor brain penetrance, limiting their use in patients with central nervous system malignancies, a number of which have been shown to be sensitive to EZH2 inhibition. To address this need, we have identified a chemical strategy, based on computational modeling of pyridone-containing EZH2 inhibitor scaffolds, to minimize P-glycoprotein activity, and here we report the first brain-penetrant EZH2 inhibitor, TDI-6118 (compound 5). Additionally, in the course of our attempts to optimize this compound, we discovered TDI-11904 (compound 21), a novel, highly potent, and peripherally active EZH2 inhibitor based on a 7 member ring structure.
引用
收藏
页码:377 / 387
页数:11
相关论文
共 46 条
[1]  
[Anonymous], 2017, MMWR Morb Mortal Wkly Rep, V66, P461, DOI 10.15585/mmwr.mm6617a5
[2]   Synthetic lethality by targeting EZH2 methyltransferase activity in ARID1A-mutated cancers [J].
Bitler, Benjamin G. ;
Aird, Katherine M. ;
Garipov, Azat ;
Li, Hua ;
Amatangelo, Michael ;
Kossenkov, Andrew V. ;
Schultz, David C. ;
Liu, Qin ;
Shih, Ie-Ming ;
Conejo-Garcia, Jose R. ;
Speicher, David W. ;
Zhang, Rugang .
NATURE MEDICINE, 2015, 21 (03) :231-+
[3]   Polycomb repressive complex 2 structure with inhibitor reveals a mechanism of activation and drug resistance [J].
Brooun, Alexei ;
Gajiwala, Ketan S. ;
Deng, Ya-Li ;
Liu, Wei ;
Bolanos, Ben ;
Bingham, Patrick ;
He, You-Ai ;
Diehl, Wade ;
Grable, Nicole ;
Kung, Pei-Pei ;
Sutton, Scott ;
Maegley, Karen A. ;
Yu, Xiu ;
Stewart, Al E. .
NATURE COMMUNICATIONS, 2016, 7 :11384
[4]   Role of histone H3 lysine 27 methylation in polycomb-group silencing [J].
Cao, R ;
Wang, LJ ;
Wang, HB ;
Xia, L ;
Erdjument-Bromage, H ;
Tempst, P ;
Jones, RS ;
Zhang, Y .
SCIENCE, 2002, 298 (5595) :1039-1043
[5]   Comprehensive genomic characterization defines human glioblastoma genes and core pathways [J].
Chin, L. ;
Meyerson, M. ;
Aldape, K. ;
Bigner, D. ;
Mikkelsen, T. ;
VandenBerg, S. ;
Kahn, A. ;
Penny, R. ;
Ferguson, M. L. ;
Gerhard, D. S. ;
Getz, G. ;
Brennan, C. ;
Taylor, B. S. ;
Winckler, W. ;
Park, P. ;
Ladanyi, M. ;
Hoadley, K. A. ;
Verhaak, R. G. W. ;
Hayes, D. N. ;
Spellman, Paul T. ;
Absher, D. ;
Weir, B. A. ;
Ding, L. ;
Wheeler, D. ;
Lawrence, M. S. ;
Cibulskis, K. ;
Mardis, E. ;
Zhang, Jinghui ;
Wilson, R. K. ;
Donehower, L. ;
Wheeler, D. A. ;
Purdom, E. ;
Wallis, J. ;
Laird, P. W. ;
Herman, J. G. ;
Schuebel, K. E. ;
Weisenberger, D. J. ;
Baylin, S. B. ;
Schultz, N. ;
Yao, Jun ;
Wiedemeyer, R. ;
Weinstein, J. ;
Sander, C. ;
Gibbs, R. A. ;
Gray, J. ;
Kucherlapati, R. ;
Lander, E. S. ;
Myers, R. M. ;
Perou, C. M. ;
McLendon, Roger .
NATURE, 2008, 455 (7216) :1061-1068
[6]   How hydrogen bonds impact P-glycoprotein transport and permeability [J].
Desai, Prashant V. ;
Raub, Thomas J. ;
Blanco, Maria-Jesus .
BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 2012, 22 (21) :6540-6548
[7]   Strategies to assess blood-brain barrier penetration [J].
Di, Li ;
Kerns, Edward H. ;
Carter, Guy T. .
EXPERT OPINION ON DRUG DISCOVERY, 2008, 3 (06) :677-687
[8]   The Critical Role of Passive Permeability in Designing Successful Drugs [J].
Di, Li ;
Artursson, Per ;
Avdeef, Alex ;
Benet, Leslie Z. ;
Houston, J. Brian ;
Kansy, Manfred ;
Kerns, Edward H. ;
Lennernaes, Hans ;
Smith, Dennis A. ;
Sugano, Kiyohiko .
CHEMMEDCHEM, 2020, 15 (20) :1862-1874
[9]   Demystifying Brain Penetration in Central Nervous System Drug Discovery [J].
Di, Li ;
Rong, Haojing ;
Feng, Bo .
JOURNAL OF MEDICINAL CHEMISTRY, 2013, 56 (01) :2-12
[10]   Chemosensitive Relapse in Small Cell Lung Cancer Proceeds through an EZH2-SLFN11 Axis [J].
Gardner, Eric E. ;
Lok, Benjamin H. ;
Schneeberger, Valentina E. ;
Desmeules, Patrice ;
Miles, Linde A. ;
Arnold, Paige K. ;
Ni, Andy ;
Khodos, Inna ;
de Stanchina, Elisa ;
Thuyen Nguyen ;
Sage, Julien ;
Campbell, John E. ;
Ribich, Scott ;
Rekhtman, Natasha ;
Dowlati, Afshin ;
Massion, Pierre P. ;
Rudin, Charles M. ;
Poirier, John T. .
CANCER CELL, 2017, 31 (02) :286-299