Uncertain maximum likelihood estimation with application to uncertain regression analysis

被引:87
作者
Lio, Waichon [1 ]
Liu, Baoding [1 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Uncertainty theory; Regression analysis; Maximum likelihood estimation; Imprecise observation;
D O I
10.1007/s00500-020-04951-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Regression analysis is a mathematical tool to estimate the relationship between explanatory variables and response variable. This paper defines a likelihood function in the sense of uncertain measure to represent the likelihood of unknown parameters. Furthermore, the method of maximum likelihood estimation is used for the parameter estimation of uncertain regression models, and the uncertainty distribution of the disturbance term is simultaneously calculated. Finally, some numerical examples are documented to illustrate the proposed method.
引用
收藏
页码:9351 / 9360
页数:10
相关论文
共 14 条
[1]  
[Anonymous], 2014, Journal of Uncertainty Analysis and Applications, DOI [10.1186/2195-5468-2-5, DOI 10.1186/2195-5468-2-5]
[2]  
[Anonymous], 2009, J. Uncertain Syst, DOI DOI 10.HTTP://WWW.W0RLDACADEMICUNI0N.C0M/J0URNAL/JUS/JUSV0L03N01PAPER01.PDF
[3]  
[Anonymous], 2020, TECHNICAL REPORT
[4]  
[Anonymous], 2012, Journal of Uncertain Systems
[5]   Uncertain revised regression analysis with responses of logarithmic, square root and reciprocal transformations [J].
Fang, Liang ;
Hong, Yiping .
SOFT COMPUTING, 2020, 24 (04) :2655-2670
[6]   Uncertain Gompertz regression model with imprecise observations [J].
Hu, Zeyu ;
Gao, Jinwu .
SOFT COMPUTING, 2020, 24 (04) :2543-2549
[7]   Residual and confidence interval for uncertain regression model with imprecise observations [J].
Lio, Waichon ;
Liu, Baoding .
JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2018, 35 (02) :2573-2583
[8]  
Liu B., 2007, Uncertainty Theory, VSecond, DOI DOI 10.1007/978-3-642-13959-8
[9]   Leave-p-Out Cross-Validation Test for Uncertain Verhulst-Pearl Model With Imprecise Observations [J].
Liu, Shiqin .
IEEE ACCESS, 2019, 7 :131705-131709
[10]   Least absolute deviations estimation for uncertain regression with imprecise observations [J].
Liu, Zhe ;
Yang, Ying .
FUZZY OPTIMIZATION AND DECISION MAKING, 2020, 19 (01) :33-52