INFOMATAS multi-center systematic review and meta-analysis individual patient data of dynamic cerebral autoregulation in ischemic stroke

被引:11
作者
Beishon, L. [1 ]
Minhas, J. S. [1 ,2 ]
Nogueira, R. [3 ]
Castro, P. [4 ,5 ]
Budgeon, C. [2 ]
Aries, M. [6 ]
Payne, S. [7 ]
Robinson, T. G. [1 ,2 ]
Panerai, R. B. [1 ,2 ]
机构
[1] Univ Leicester, CHIASM Grp, Dept Cardiovasc Sci, Leicester, Leics, England
[2] Glenfield Hosp, British Heart Fdn, Cardiovasc Res Ctr, NIHR Leicester Biomed Res Ctr, Leicester, Leics, England
[3] Univ Sao Paulo, Dept Neurol, Sch Med, Hosp Clin, Sao Paulo, Brazil
[4] Ctr Hosp Univ Sao Joao, Stroke Unit, Porto, Portugal
[5] Ctr Hosp Univ Sao Joao, Dept Neurol, Porto, Portugal
[6] Univ Maastricht, Maastricht Univ Med Ctr, Dept Intens Care, Maastricht, Netherlands
[7] Univ Oxford, Inst Biomed Engn, Dept Engn Sci, Oxford, England
关键词
Cerebral autoregulation; ischemic stroke; cerebral hemodynamics; blood pressure; meta-analysis; autoregulation index;
D O I
10.1177/1747493020907003
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Rationale Disturbances in dynamic cerebral autoregulation after ischemic stroke may have important implications for prognosis. Recent meta-analyses have been hampered by heterogeneity and small samples. Aim and/or hypothesis The aim of study is to undertake an individual patient data meta-analysis (IPD-MA) of dynamic cerebral autoregulation changes post-ischemic stroke and to determine a predictive model for outcome in ischemic stroke using information combined from dynamic cerebral autoregulation, clinical history, and neuroimaging. Sample size estimates To detect a change of 2% between categories in modified Rankin scale requires a sample size of similar to 1500 patients with moderate to severe stroke, and a change of 1 in autoregulation index requires a sample size of 45 healthy individuals (powered at 80%, alpha = 0.05). Pooled estimates of mean and standard deviation derived from this study will be used to inform sample size calculations for adequately powered future dynamic cerebral autoregulation studies in ischemic stroke. Methods and design This is an IPD-MA as part of an international, multi-center collaboration (INFOMATAS) with three phases. Firstly, univariate analyses will be constructed for primary (modified Rankin scale) and secondary outcomes, with key co-variates and dynamic cerebral autoregulation parameters. Participants clustering from within studies will be accounted for with random effects. Secondly, dynamic cerebral autoregulation variables will be validated for diagnostic and prognostic accuracy in ischemic stroke using summary receiver operating characteristic curve analysis. Finally, the prognostic accuracy will be determined for four different models combining clinical history, neuroimaging, and dynamic cerebral autoregulation parameters. Study outcome(s) The outcomes for this study are to determine the relationship between clinical outcome, dynamic cerebral autoregulation changes, and baseline patient demographics, to determine the diagnostic and prognostic accuracy of dynamic cerebral autoregulation parameters, and to develop a prognostic model using dynamic cerebral autoregulation in ischemic stroke. Discussion This is the first international collaboration to use IPD-MA to determine prognostic models of dynamic cerebral autoregulation for patients with ischemic stroke.
引用
收藏
页码:807 / 812
页数:6
相关论文
共 20 条
  • [1] Cerebral Autoregulation in Stroke A Review of Transcranial Doppler Studies
    Aries, Marcel J. H.
    Elting, Jan W.
    De Keyser, Jacques
    Kremer, Berry P. H.
    Vroomen, Patrick C. A. J.
    [J]. STROKE, 2010, 41 (11) : 2697 - 2704
  • [2] Transfer function analysis of dynamic cerebral autoregulation: A white paper from the International Cerebral Autoregulation Research Network
    Claassen, Jurgen A. H. R.
    Meel-van den Abeelen, Aisha S. S.
    Simpson, David M.
    Panerai, Ronney B.
    [J]. JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2016, 36 (04) : 665 - 680
  • [3] The STROBE guidelines
    Cuschieri, Sarah
    [J]. SAUDI JOURNAL OF ANAESTHESIA, 2019, 13 : 31 - 34
  • [4] Falci Saulo Gabriel Moreira, 2015, Dental Press J Orthod, V20, P13, DOI 10.1590/2176-9451.20.3.013-015.ebo
  • [5] Development of an interactive web-based tool to conduct and interrogate meta-analysis of diagnostic test accuracy studies: MetaDTA
    Freeman, Suzanne C.
    Kerby, Clareece R.
    Patel, Amit
    Cooper, Nicola J.
    Quinn, Terry
    Sutton, Alex J.
    [J]. BMC MEDICAL RESEARCH METHODOLOGY, 2019, 19 (1)
  • [6] A comparison of one-stage vs two-stage individual patient data meta-analysis methods: A simulation study
    Kontopantelis, Evangelos
    [J]. RESEARCH SYNTHESIS METHODS, 2018, 9 (03) : 417 - 430
  • [7] Olavarría VV, 2017, CONT CLIN TRIAL COMM, V5, P133, DOI 10.1016/j.conctc.2017.01.008
  • [8] Transcranial Doppler for evaluation of cerebral autoregulation
    Panerai, Ronney B.
    [J]. CLINICAL AUTONOMIC RESEARCH, 2009, 19 (04) : 197 - 211
  • [9] The Leicester cerebral haemodynamics database: normative values and the influence of age and sex
    Patel, Nikil
    Panerai, Ronney B.
    Haunton, Victoria
    Katsogridakis, Emmanuel
    Saeed, Nazia P.
    Salinet, Angela
    Brodie, Fiona
    Syed, Nazia
    D'Sa, Schnell
    Robinson, Thompson G.
    [J]. PHYSIOLOGICAL MEASUREMENT, 2016, 37 (09) : 1485 - 1498
  • [10] Meta-analysis of individual participant data: rationale, conduct, and reporting
    Riley, Richard D.
    Lambert, Paul C.
    Abo-Zaid, Ghada
    [J]. BMJ-BRITISH MEDICAL JOURNAL, 2010, 340 : 521 - 525