On the 'pits effect' of Littlewood and Offord

被引:8
作者
Eremenko, Alexandre [1 ]
Ostrovskii, Iossif [2 ]
机构
[1] Purdue Univ, W Lafayette, IN 47907 USA
[2] Bilkent Univ, TR-06533 Ankara, Turkey
基金
美国国家科学基金会;
关键词
D O I
10.1112/blms/bdm079
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Asymptotic behaviour of the entire functions f(z) = Sigma(infinity)(n=0) e(2 pi in alpha n) z(n)/n!, with real an is studied. It turns out that the Phragmennn-Lindelof indicator of such a function is always non-negative, unless f( z) = e(az). For a special choice of alpha(n) = alpha n(2) with irrational alpha, the indicator is constant and f has completely regular growth in the sense of Levin and Pfluger. Similar functions of arbitrary order are also considered.
引用
收藏
页码:929 / 939
页数:11
相关论文
共 28 条
[21]  
MACINTYRE S, 1948, DUKE MATH J, V15, P953
[22]  
Nassif M., 1952, P LOND MATH SOC, V54, P201
[23]  
Ostrovskii I. V., 2006, COMPUT METH FUNCT TH, V6, P1
[24]   SUB-SERIES OF THE POWER-SERIES FOR EX [J].
RUBEL, L ;
STOLARSKY, K .
AMERICAN MATHEMATICAL MONTHLY, 1980, 87 (05) :371-376
[25]  
SODIN M, 1983, TEOR FUNKTSII FUNKTS, V40, P125
[26]  
TIMS S, 1952, P LOND MATH SOC, V54, P215
[27]  
TUTTE WT, 1967, J COMB THEORY, V2, P301
[28]  
VALIRON G, 1945, J MATH PURE APPL, V12, P405