On the 'pits effect' of Littlewood and Offord

被引:8
作者
Eremenko, Alexandre [1 ]
Ostrovskii, Iossif [2 ]
机构
[1] Purdue Univ, W Lafayette, IN 47907 USA
[2] Bilkent Univ, TR-06533 Ankara, Turkey
基金
美国国家科学基金会;
关键词
D O I
10.1112/blms/bdm079
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Asymptotic behaviour of the entire functions f(z) = Sigma(infinity)(n=0) e(2 pi in alpha n) z(n)/n!, with real an is studied. It turns out that the Phragmennn-Lindelof indicator of such a function is always non-negative, unless f( z) = e(az). For a special choice of alpha(n) = alpha n(2) with irrational alpha, the indicator is constant and f has completely regular growth in the sense of Levin and Pfluger. Similar functions of arbitrary order are also considered.
引用
收藏
页码:929 / 939
页数:11
相关论文
共 28 条
[1]  
ALADER M, 1914, THESIS UPPSALA
[2]  
Azarin V. S., 1979, (Russian) Mat. Sb. (N.S.) 108(150), V303, P147
[3]  
Bieberbach L., 1955, ANAL FORTZETZUNG, DOI [10.1002/zamm19550350918, DOI 10.1002/ZAMM19550350918]
[4]  
CARLSON F, 1915, ARK MAT ASTRON OCH F, V10, P16
[5]  
CARROLL FW, 1960, T AM MATH SOC, V94, P74
[6]  
COOPER R, 1928, P LOND MATH SOC, V27, P410
[7]  
Evgrafov MA, 1954, ABEL GONCHAROV INTER
[8]  
EVGRAFOV MA, 1953, IZV AN SSSR M, V17, P421
[9]  
Gaier D., 1980, Vorlesungen uber Approximation im Komplexen