Homomorphisms from automorphism groups of free groups

被引:18
作者
Bridson, MR
Vogtmann, K
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2BZ, England
[2] Cornell Univ, Dept Math, Ithaca, NY 14850 USA
基金
美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
D O I
10.1112/S0024609303002248
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The automorphism group of a finitely generated free group is the normal closure of a single element of order 2. If m < n, then a homomorphism Aut(F-n) --> Aut(F-m) can have image of cardinality at most 2. More generally, this is true of homomorphisms from Aut(F,) to any group that does not contain an isomorphic image of the symmetric group Sn+1. Strong restrictions are also obtained on maps to groups that do not contain a copy of W-n = (Z/2)(n) > S-n, or of Z(n-1). These results place constraints on how Aut(F-n) can act. For example, if n greater than or equal to 3, any action of Aut(F-n) on the circle (by homeomorphisms) factors through det : Aut(F-n) --> Z(2).
引用
收藏
页码:785 / 792
页数:8
相关论文
共 11 条
[1]  
ADIAN SI, 1979, ERGEBNISSE MATH IHRE, V95
[2]  
[Anonymous], 1994, INT J ALGEBRA COMPUT
[4]  
BAUMSLAG G, 1968, MATH ANN, V175, P315
[5]   Automorphisms of automorphism groups of free groups [J].
Bridson, MR ;
Vogtmann, K .
JOURNAL OF ALGEBRA, 2000, 229 (02) :785-792
[6]   A remark about actions of lattices on free groups [J].
Bridson, MR ;
Farb, B .
TOPOLOGY AND ITS APPLICATIONS, 2001, 110 (01) :21-24
[7]   MODULI OF GRAPHS AND AUTOMORPHISMS OF FREE GROUPS [J].
CULLER, M ;
VOGTMANN, K .
INVENTIONES MATHEMATICAE, 1986, 84 (01) :91-119
[8]  
FRAB B, GROUPS HOMEOMORPHISM
[9]  
FULTON W., 1991, GRAD TEXTS MATH, V129
[10]   A PRESENTATION FOR THE SPECIAL AUTOMORPHISM GROUP OF A FREE GROUP [J].
GERSTEN, SM .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1984, 33 (03) :269-279