Non-integrability for general nonlinear systems

被引:20
作者
Shi, SY [1 ]
Li, Y [1 ]
机构
[1] Jilin Univ, Dept Math, Changchun 130023, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2001年 / 52卷 / 02期
关键词
nontrivial integrals; non-integrability; (semi-)quasi-homogeneous systems; Kowalevsky exponents;
D O I
10.1007/PL00001543
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we give some simple criteria for the non-existence of analytic integrals of general nonlinear systems.
引用
收藏
页码:191 / 200
页数:10
相关论文
共 6 条
[1]   On non-integrability of general systems of differential equations [J].
Furta, SD .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1996, 47 (01) :112-131
[2]   A CRITERION FOR THE NON-EXISTENCE OF AN ADDITIONAL ANALYTIC INTEGRAL IN HAMILTONIAN-SYSTEMS WITH N-DEGREES OF FREEDOM [J].
YOSHIDA, H .
PHYSICS LETTERS A, 1989, 141 (3-4) :108-112
[3]   NECESSARY CONDITION FOR THE EXISTENCE OF ALGEBRAIC 1ST INTEGRALS .1. KOWALEVSKI EXPONENTS [J].
YOSHIDA, H .
CELESTIAL MECHANICS, 1983, 31 (04) :363-379
[4]   A CRITERION FOR THE NON-EXISTENCE OF AN ADDITIONAL INTEGRAL IN HAMILTONIAN-SYSTEMS WITH A HOMOGENEOUS POTENTIAL [J].
YOSHIDA, H .
PHYSICA D, 1987, 29 (1-2) :128-142
[5]   A NOTE ON KOWALEVSKI EXPONENTS AND THE NON-EXISTENCE OF AN ADDITIONAL ANALYTIC INTEGRAL [J].
Yoshida, Haruo .
CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1988, 44 (04) :313-316