Flexible Solid-State Electrolyte with Aligned Nanostructures Derived from Wood

被引:98
作者
Dai, Jiaqi [1 ]
Fu, Kun [1 ,2 ]
Gong, Yunhui [1 ,2 ]
Song, Jianwei [1 ]
Chen, Chaoji [1 ]
Yao, Yonggang [1 ]
Pastel, Glenn [1 ]
Zhang, Lei [2 ]
Wachsman, Eric [1 ,2 ]
Hu, Liangbing [1 ,2 ]
机构
[1] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA
[2] Univ Maryland, Maryland Energy Innovat Inst, College Pk, MD 20742 USA
来源
ACS MATERIALS LETTERS | 2019年 / 1卷 / 03期
关键词
COMPOSITE POLYMER ELECTROLYTES; IONIC-CONDUCTIVITY ENHANCEMENT; TRANSPORT-PROPERTIES; CERAMIC FILLERS; LITHIUM BATTERY; IMPEDANCE; AL2O3;
D O I
10.1021/acsmaterialslett.9b00189
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Solid-state Li-batteries (SSLiBs) with solid-state electrolytes (SSEs) can potentially block Li dendrite penetration, enabling the application of metallic lithium anodes to achieve high energy density with improved safety. The ion transport behavior and ionic conductivity in Li-ion batteries is significantly influenced by the tortuosity of the electrode and electrolyte materials. Low-tortuosity structures with straight ion pathways are highly desirable yet very difficult to achieve in solid-state ion conductors. Templating from wood, for the first time, we developed a highly conductive garnet framework with multiscale aligned mesostructure through a scalable, top-down approach. Ion-conductive poly(ethylene oxide) (PEO) was incorporated into the mesoporous, wood-templated aligned garnet nanostructure, resulting in a flexible solid-state composite electrolyte. The synergistic integration of the aligned garnet with soft, mechanically robust polymer results in both a high ionic conductivity (1.8 X 10(-4) S/cm at room temperature) and good mechanical flexibility. This work provides a new direction for developing low-tortuosity, fast ion conductors inspired by nature.
引用
收藏
页码:354 / 361
页数:15
相关论文
共 54 条
[1]   Flexible Ion-Conducting Composite Membranes for Lithium Batteries [J].
Aetukuri, Nagaphani B. ;
Kitajima, Shintaro ;
Jung, Edward ;
Thompson, Leslie E. ;
Virwani, Kumar ;
Reich, Maria-Louisa ;
Kunze, Miriam ;
Schneider, Meike ;
Schmidbauer, Wolfgang ;
Wilcke, Winfried W. ;
Bethune, Donald S. ;
Scott, J. Campbell ;
Miller, Robert D. ;
Kim, Ho-Cheol .
ADVANCED ENERGY MATERIALS, 2015, 5 (14)
[2]   Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview [J].
Agrawal, R. C. ;
Pandey, G. P. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2008, 41 (22)
[3]  
[Anonymous], 2017, Angewandte Chemie
[4]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[5]  
Billaud J, 2016, NAT ENERGY, V1, DOI [10.1038/nenergy.2016.97, 10.1038/NENERGY.2016.97]
[6]   Structure and dynamics of the fast lithium ion conductor "Li7La3Zr2O12" [J].
Buschmann, Henrik ;
Doelle, Janis ;
Berendts, Stefan ;
Kuhn, Alexander ;
Bottke, Patrick ;
Wilkening, Martin ;
Heitjans, Paul ;
Senyshyn, Anatoliy ;
Ehrenberg, Helmut ;
Lotnyk, Andriy ;
Duppel, Viola ;
Kienle, Lorenz ;
Janek, Juergen .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (43) :19378-19392
[7]   Anisotropic ion transport in nanostructured solid polymer electrolytes [J].
Cheng, Shan ;
Smith, Derrick M. ;
Pan, Qiwei ;
Wang, Shijun ;
Li, Christopher Y. .
RSC ADVANCES, 2015, 5 (60) :48793-48810
[8]   Promise and reality of post-lithium-ion batteries with high energy densities [J].
Choi, Jang Wook ;
Aurbach, Doron .
NATURE REVIEWS MATERIALS, 2016, 1 (04)
[9]   Increasing the conductivity of crystalline polymer electrolytes [J].
Christie, AM ;
Lilley, SJ ;
Staunton, E ;
Andreev, YG ;
Bruce, PG .
NATURE, 2005, 433 (7021) :50-53
[10]   Room-Temperature All-solid-state Rechargeable Sodium-ion Batteries with a Cl-doped Na3PS4 Superionic Conductor [J].
Chu, Iek-Heng ;
Kompella, Christopher S. ;
Han Nguyen ;
Zhu, Zhuoying ;
Hy, Sunny ;
Deng, Zhi ;
Meng, Ying Shirley ;
Ong, Shyue Ping .
SCIENTIFIC REPORTS, 2016, 6