Visual-Inertial SLAM Initialization: A General Linear Formulation and a Gravity-Observing Non-Linear Optimization

被引:11
作者
Dominguez-Conti, Javier [1 ]
Yin, Jianfeng [2 ]
Alami, Yacine [2 ]
Civera, Javier [1 ]
机构
[1] Univ Zaragoza, I3A, Zaragoza, Spain
[2] Geomag Labs Inc, 444 Castro St,Suite 710, Mountain View, CA 94041 USA
来源
PROCEEDINGS OF THE 2018 IEEE INTERNATIONAL SYMPOSIUM ON MIXED AND AUGMENTED REALITY (ISMAR) | 2018年
关键词
Visual-Inertial SLAM; Visual-Inertial Initialization; Visual-Inertial Localization; Visual-Inertial Mapping; Sensor Fusion; NAVIGATION; VISION; FUSION;
D O I
10.1109/ISMAR.2018.00027
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The initialization is one of the less reliable pieces of Visual-Inertial SLAM (VI-SLAM) and Odometry (VI-0). The estimation of the initial state (camera poses, IMU states and landmark positions) from the first data readings lacks the accuracy and robustness of other parts of the pipeline, and most algorithms have high failure rates and/or initialization delays up to tens of seconds. Such initialization is critical for AR systems, as the failures and delays of the current approaches can ruin the user experience or mandate impractical guided calibration. In this paper we address the state initialization problem using a monocular-inertial sensor setup, the most common in AR platforms. Our contributions are 1) a general linear formulation to obtain an initialization seed, and 2) a non-linear optimization scheme, including gravity, to refine the seed. Our experimental results, in a public dataset, show that our approach improves the accuracy and robustness of current VI state initialization schemes.
引用
收藏
页码:37 / 45
页数:9
相关论文
共 29 条
[11]   Information fusion in navigation systems via factor graph based incremental smoothing [J].
Indelman, Vadim ;
Williams, Stephen ;
Kaess, Michael ;
Dellaert, Frank .
ROBOTICS AND AUTONOMOUS SYSTEMS, 2013, 61 (08) :721-738
[12]   Simultaneous State Initialization and Gyroscope Bias Calibration in Visual Inertial Aided Navigation [J].
Kaiser, Jacques ;
Martinelli, Agostino ;
Fontana, Flavio ;
Scaramuzza, Davide .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2017, 2 (01) :18-25
[13]  
Klein George, 2007, P1
[14]   Keyframe-based visual-inertial odometry using nonlinear optimization [J].
Leutenegger, Stefan ;
Lynen, Simon ;
Bosse, Michael ;
Siegwart, Roland ;
Furgale, Paul .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2015, 34 (03) :314-334
[15]   High-precision, consistent EKF-based visual-inertial odometry [J].
Li, Mingyang ;
Mourikis, Anastasios I. .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2013, 32 (06) :690-711
[16]   Robust Keyframe-based Monocular SLAM for Augmented Reality [J].
Liu, Haomin ;
Zhang, Guofeng ;
Bao, Hujun .
PROCEEDINGS OF THE 2016 15TH IEEE INTERNATIONAL SYMPOSIUM ON MIXED AND AUGMENTED REALITY (ISMAR), 2016, :1-10
[17]   Visual-Inertial-Aided Navigation for High-Dynamic Motion in Built Environments Without Initial Conditions [J].
Lupton, Todd ;
Sukkarieh, Salah .
IEEE TRANSACTIONS ON ROBOTICS, 2012, 28 (01) :61-76
[18]   Large Scale Dense Visual Inertial SLAM [J].
Ma, Lu ;
Falquez, Juan M. ;
McGuire, Steve ;
Sibley, Gabe .
FIELD AND SERVICE ROBOTICS: RESULTS OF THE 10TH INTERNATIONAL CONFERENCE, 2016, 113 :141-155
[19]   Closed-Form Solution of Visual-Inertial Structure from Motion [J].
Martinelli, Agostino .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2014, 106 (02) :138-152
[20]   Vision and IMU Data Fusion: Closed-Form Solutions for Attitude, Speed, Absolute Scale, and Bias Determination [J].
Martinelli, Agostino .
IEEE TRANSACTIONS ON ROBOTICS, 2012, 28 (01) :44-60