Training recurrent neural networks robust to incomplete data: Application to Alzheimer's disease progression modeling

被引:90
作者
Ghazi, Mostafa Mehdipour [1 ,2 ,3 ,4 ]
Nielsen, Mads [1 ,2 ,3 ]
Pai, Akshay [1 ,2 ,3 ]
Cardoso, M. Jorge [4 ,5 ]
Modat, Marc [4 ,5 ]
Ourselin, Sebastien [4 ,5 ]
Sorensen, Lauge [1 ,2 ,3 ]
机构
[1] Biomediq AS, Copenhagen, Denmark
[2] Cerebriu AS, Copenhagen, Denmark
[3] Univ Copenhagen, Dept Comp Sci, Copenhagen, Denmark
[4] UCL, Ctr Med Image Comp, London, England
[5] Kings Coll London, Sch Biomed Engn & Imaging Sci, London, England
基金
美国国家卫生研究院; 加拿大健康研究院;
关键词
Alzheimer's disease; Disease progression modeling; Linear discriminant analysis; Long short-term memory; Magnetic resonance imaging; Recurrent neural networks; BIOMARKERS; DIAGNOSIS;
D O I
10.1016/j.media.2019.01.004
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Disease progression modeling (DPM) using longitudinal data is a challenging machine learning task. Existing DPM algorithms neglect temporal dependencies among measurements, make parametric assumptions about biomarker trajectories, do not model multiple biomarkers jointly, and need an alignment of subjects' trajectories. In this paper, recurrent neural networks (RNNs) are utilized to address these issues. However, in many cases, longitudinal cohorts contain incomplete data, which hinders the application of standard RNNs and requires a pre-processing step such as imputation of the missing values. Instead, we propose a generalized training rule for the most widely used RNN architecture, long short-term memory (LSTM) networks, that can handle both missing predictor and target values. The proposed LSTM algorithm is applied to model the progression of Alzheimer's disease (AD) using six volumetric magnetic resonance imaging (MRI) biomarkers, i.e., volumes of ventricles, hippocampus, whole brain, fusiform, middle temporal gyrus, and entorhinal cortex, and it is compared to standard LSTM networks with data imputation and a parametric, regression-based DPM method. The results show that the proposed algorithm achieves a significantly lower mean absolute error (MAE) than the alternatives with p < 0.05 using Wilcoxon signed rank test in predicting values of almost all of the MRI biomarkers. Moreover, a linear discriminant analysis (LDA) classifier applied to the predicted biomarker values produces a significantly larger area under the receiver operating characteristic curve (AUC) of 0.90 vs. at most 0.84 with p < 0.001 using McNemar's test for clinical diagnosis of AD. Inspection of MAE curves as a function of the amount of missing data reveals that the proposed LSTM algorithm achieves the best performance up until more than 74% missing values. Finally, it is illustrated how the method can successfully be applied to data with varying time intervals. This paper shows that built-in handling of missing values in training an LSTM network benefits the application of RNNs in neurodegenerative disease progression modeling in longitudinal cohorts. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:39 / 46
页数:8
相关论文
共 29 条
[1]  
[Anonymous], IEEE T BIOMED ENG
[2]  
[Anonymous], ABS180503909 CORR
[3]  
[Anonymous], ABS180805500 CORR
[4]  
[Anonymous], 2014, BAYESIAN GRAPHICAL M
[5]  
[Anonymous], 2016, P MACH LEARN HEALTHC
[6]   Patient Subtyping via Time-Aware LSTM Networks [J].
Baytas, Inci M. ;
Xiao, Cao ;
Zhang, Xi ;
Wang, Fei ;
Jain, Anil K. ;
Zhou, Jiayu .
KDD'17: PROCEEDINGS OF THE 23RD ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2017, :65-74
[7]   Using biomarkers to improve detection of Alzheimer's disease [J].
Biagioni, Milton C. ;
Galvin, James E. .
NEURODEGENERATIVE DISEASE MANAGEMENT, 2011, 1 (02) :127-139
[8]   Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: The CADDementia challenge [J].
Bron, Esther E. ;
Smits, Marion ;
van der Flier, Wiesje M. ;
Vrenken, Hugo ;
Barkhof, Frederik ;
Scheltens, Philip ;
Papma, Janne M. ;
Steketee, Rebecca M. E. ;
Orellana, Carolina Mendez ;
Meijboom, Rozanna ;
Pinto, Madalena ;
Meireles, Joana R. ;
Garrett, Carolina ;
Bastos-Leite, Antonio J. ;
Abdulkadir, Ahmed ;
Ronneberger, Olaf ;
Amoroso, Nicola ;
Bellotti, Roberto ;
Cardenas-Pena, David ;
Alvarez-Meza, Andres M. ;
Dolph, Chester V. ;
Iftekharuddin, Khan M. ;
Eskildsen, Simon F. ;
Coupe, Pierrick ;
Fonov, Vladimir S. ;
Franke, Katja ;
Gaser, Christian ;
Ledig, Christian ;
Guerrero, Ricardo ;
Tong, Tong ;
Gray, Katherine R. ;
Moradi, Elaheh ;
Tohka, Jussi ;
Routier, Alexandre ;
Durrleman, Stanley ;
Sarica, Alessia ;
Di Fatta, Giuseppe ;
Sensi, Francesco ;
Chincarini, Andrea ;
Smith, Garry M. ;
Stoyanov, Zhivko V. ;
Sorensen, Lauge ;
Nielsen, Mads ;
Tangaro, Sabina ;
Inglese, Paolo ;
Wachinger, Christian ;
Reuter, Martin ;
van Swieten, John C. ;
Niessen, Wiro J. ;
Klein, Stefan .
NEUROIMAGE, 2015, 111 :562-579
[9]   Recurrent Neural Networks for Multivariate Time Series with Missing Values [J].
Che, Zhengping ;
Purushotham, Sanjay ;
Cho, Kyunghyun ;
Sontag, David ;
Liu, Yan .
SCIENTIFIC REPORTS, 2018, 8
[10]  
Cho Kyunghyun, 2014, C EMPIRICAL METHODS, P1724