A multigrid scheme for elliptic constrained optimal control problems

被引:50
作者
Borzì, A [1 ]
Kunisch, K [1 ]
机构
[1] Karl Franzens Univ Graz, Inst Math & Wissensch Rechnen, A-8010 Graz, Austria
关键词
constrained optimal control problems; finite differences; multigrid methods;
D O I
10.1007/s10589-005-3228-z
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
A multigrid scheme for the solution of constrained optimal control problems discretized by finite differences is presented. This scheme is based on a new relaxation procedure that satisfies the given constraints pointwise on the computational grid. In applications, the cases of distributed and boundary control problems with box constraints are considered. The efficient and robust computational performance of the present multigrid scheme allows to investigate bang-bang control problems.
引用
收藏
页码:309 / 333
页数:25
相关论文
共 21 条
[1]   Error estimates for the numerical approximation of a semilinear elliptic control problem [J].
Arada, N ;
Casas, E ;
Tröltzsch, F .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2002, 23 (02) :201-229
[2]  
ARIAN E, 1995, NASA C PUBLICATION, P15
[3]   Multigrid methods for parabolic distributed optimal control problems [J].
Borzì, A .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 157 (02) :365-382
[4]   The numerical solution of the steady state solid fuel ignition model and its optimal control [J].
Borzì, A ;
Kunisch, K .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 22 (01) :263-284
[5]   ACCURACY AND CONVERGENCE PROPERTIES OF THE FINITE DIFFERENCE MULTIGRID SOLUTION OF AN OPTIMAL CONTROL OPTIMALITY SYSTEM [J].
Borzi, Alfio ;
Kunisch, Karl ;
Kwak, Do Y. .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2003, 41 (05) :1477-1497
[6]  
BRANDT A, 1977, MATH COMPUT, V31, P333, DOI 10.1090/S0025-5718-1977-0431719-X
[7]   MULTIGRID ALGORITHMS FOR THE SOLUTION OF LINEAR COMPLEMENTARITY-PROBLEMS ARISING FROM FREE-BOUNDARY PROBLEMS [J].
BRANDT, A ;
CRYER, CW .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1983, 4 (04) :655-684
[8]  
Courant R., 1966, METHODS MATH PHYS
[9]   Multigrid optimization in applications [J].
Dreyer, T ;
Maar, B ;
Schulz, V .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 120 (1-2) :67-84
[10]  
Eppler K., 1986, Optimization, V17, P93, DOI 10.1080/02331938608843105