Optimal ramp shapes for the fermionic Hubbard model in infinite dimensions

被引:9
作者
Eurich, Nikolai [1 ]
Eckstein, Martin [1 ]
Werner, Philipp [1 ]
机构
[1] ETH, CH-8093 Zurich, Switzerland
来源
PHYSICAL REVIEW B | 2011年 / 83卷 / 15期
基金
瑞士国家科学基金会;
关键词
OPTICAL LATTICE; MONTE-CARLO; INSULATOR; FIELD;
D O I
10.1103/PhysRevB.83.155122
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We use nonequilibrium dynamical mean field theory and a real-time diagrammatic impurity solver to study the heating associated with time-dependent changes of the interaction in a fermionic Hubbard model. Optimal ramp shapes U(t) which minimize the excitation energy are determined for a noninteracting initial state and an infinitesimal change of the interaction strength. For ramp times of a few inverse hoppings, these optimal U(t) are strongly oscillating with a frequency determined by the bandwidth. We show that the scaled versions of the optimized ramps yield substantially lower temperatures than linear ramps even for final interaction values comparable to the bandwidth. The relaxation of the system after the ramp and its dependence on the ramp shape are also addressed.
引用
收藏
页数:9
相关论文
共 30 条
[1]   The ALPS project release 1.3:: Open-source software for strongly correlated systems [J].
Albuquerque, A. F. ;
Alet, F. ;
Corboz, P. ;
Dayal, P. ;
Feiguin, A. ;
Fuchs, S. ;
Gamper, L. ;
Gull, E. ;
Guertler, S. ;
Honecker, A. ;
Igarashi, R. ;
Koerner, M. ;
Kozhevnikov, A. ;
Laeuchli, A. ;
Manmana, S. R. ;
Matsumoto, M. ;
McCulloch, I. P. ;
Michel, F. ;
Noack, R. M. ;
Pawlowski, G. ;
Pollet, L. ;
Pruschke, T. ;
Schollwoeck, U. ;
Todo, S. ;
Trebst, S. ;
Troyer, M. ;
Werner, P. ;
Wessel, S. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2007, 310 (02) :1187-1193
[2]  
[Anonymous], 2010, COMP COD MATLAB VERS
[3]   Optimal nonlinear passage through a quantum critical point [J].
Barankov, Roman ;
Polkovnikov, Anatoli .
PHYSICAL REVIEW LETTERS, 2008, 101 (07)
[4]   Many-body physics with ultracold gases [J].
Bloch, Immanuel ;
Dalibard, Jean ;
Zwerger, Wilhelm .
REVIEWS OF MODERN PHYSICS, 2008, 80 (03) :885-964
[5]   A reflective Newton method for minimizing a quadratic function subject to bounds on some of the variables [J].
Coleman, TF ;
Li, YY .
SIAM JOURNAL ON OPTIMIZATION, 1996, 6 (04) :1040-1058
[6]  
DORIA P, ARXIV10033750
[7]   Dielectric Breakdown of Mott Insulators in Dynamical Mean-Field Theory [J].
Eckstein, Martin ;
Oka, Takashi ;
Werner, Philipp .
PHYSICAL REVIEW LETTERS, 2010, 105 (14)
[8]   Nonequilibrium dynamical mean-field calculations based on the noncrossing approximation and its generalizations [J].
Eckstein, Martin ;
Werner, Philipp .
PHYSICAL REVIEW B, 2010, 82 (11)
[9]   Near-adiabatic parameter changes in correlated systems: influence of the ramp protocol on the excitation energy [J].
Eckstein, Martin ;
Kollar, Marcus .
NEW JOURNAL OF PHYSICS, 2010, 12
[10]   Interaction quench in the Hubbard model: Relaxation of the spectral function and the optical conductivity [J].
Eckstein, Martin ;
Kollar, Marcus ;
Werner, Philipp .
PHYSICAL REVIEW B, 2010, 81 (11)