A rational approximation of the sinc function based on sampling and the Fourier transforms

被引:2
作者
Abrarov, Sanjar M. [1 ]
Quine, Brendan M. [1 ,2 ]
机构
[1] York Univ, Dept Earth & Space Sci & Engn, Toronto, ON M3J 1P3, Canada
[2] York Univ, Dept Phys & Astron, Toronto, ON M3J 1P3, Canada
关键词
Sinc function; Sampling; Fourier transform; Rational approximation; Numerical integration;
D O I
10.1016/j.apnum.2019.08.030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In our previous publications we have introduced the cosine product-to-sum identity [17] Pi(M)(m=1) cos(t/2(m)) = 1/2(M-1) Sigma(2M-1)(m=1) cos(2m - 1/2(M)t) and applied it for sampling [1,2] as an incomplete cosine expansion of the sinc function in order to obtain a rational approximation of the Voigt/complex error function that with only 16 summation terms can provide accuracy similar to 10(-14). In this work we generalize this approach and show as an example how a rational approximation of the sinc function can be derived. A MATLAB code validating these results is presented. Crown Copyright (C) 2019 Published by Elsevier B.V. on behalf of IMACS. All rights reserved.
引用
收藏
页码:65 / 75
页数:11
相关论文
共 19 条
[1]   Sampling by incomplete cosine expansion of the sinc function: Application to the Voigt/complex error function [J].
Abrarov, S. M. ;
Quine, B. M. .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 258 :425-435
[2]  
Abrarov S.M., 2015, J. Math. Res., V7, P163
[3]   SPECTRUM LINE PROFILES - VOIGT FUNCTION [J].
ARMSTRONG, BH .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 1967, 7 (01) :61-+
[4]   Voigt equivalent widths and spectral-bin single-line transmittances: Exact expansions and the MODTRAN®5 implementation [J].
Berk, Alexander .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2013, 118 :102-120
[5]  
Bracewell R. N., 2000, The Fourier Transform and its Applications
[6]  
Chesneau C., 2018, NOTE SIMPLE APPROXIM
[7]   Computation of market risk measures with stochastic liquidity horizon [J].
Colldeforns-Papiol, Gemma ;
Ortiz-Gracia, Luis .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 342 :431-450
[8]  
Gearhart W.B., 1990, Coll. Math. J, V21, P90, DOI [DOI 10.2307/2686748, 10.2307/2686748]
[9]  
Hansen E.W., 2014, PRINCIPLES APPL
[10]  
Kac M., 1959, Statistical Independence in Probability, Analysis and Number Theory