Improving accuracy and robustness of deep convolutional neural network based thoracic OAR segmentation

被引:25
作者
Feng, Xue [1 ,3 ]
Bernard, Mark E. [2 ]
Hunter, Thomas [2 ]
Chen, Quan [2 ,3 ]
机构
[1] Univ Virginia, Dept Biomed Engn, Charlottesville, VA 22903 USA
[2] Univ Kentucky, Dept Radiat Med, Lexington, KY 40536 USA
[3] Carina Med LLC, 145 Graham Ave,A168, Lexington, KY 40536 USA
关键词
deep learning; segmentation; generalization error; robustness; ORGANS; CT;
D O I
10.1088/1361-6560/ab7877
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Deep convolutional neural network (DCNN) has shown great success in various medical image segmentation tasks, including organ-at-risk (OAR) segmentation from computed tomography (CT) images. However, most studies use the dataset from the same source(s) for training and testing so that the ability of a trained DCNN to generalize to a different dataset is not well studied, as well as the strategy to address the issue of performance drop on a different dataset. In this study we investigated the performance of a well-trained DCNN model from a public dataset for thoracic OAR segmentation on a local dataset and explored the systematic differences between the datasets. We observed that a subtle shift of organs inside patient body due to the abdominal compression technique during image acquisition caused significantly worse performance on the local dataset. Furthermore, we developed an optimal strategy via incorporating different numbers of new cases from the local institution and using transfer learning to improve the accuracy and robustness of the trained DCNN model. We found that by adding as few as 10 cases from the local institution, the performance can reach the same level as in the original dataset. With transfer learning, the training time can be significantly shortened with slightly worse performance for heart segmentation.
引用
收藏
页数:10
相关论文
共 27 条
[1]  
[Anonymous], 2019, ARXIV190701268
[2]  
[Anonymous], 2017, ARXIV160806993, DOI DOI 10.1109/CVPR.2017.243
[3]  
Azulay Aharon., 2018, Why do deep convolutional networks generalize so poorly to small image transformations?
[4]   Advances in Auto-Segmentation [J].
Cardenas, Carlos E. ;
Yang, Jinzhong ;
Anderson, Brian M. ;
Court, Laurence E. ;
Brock, Kristy B. .
SEMINARS IN RADIATION ONCOLOGY, 2019, 29 (03) :185-197
[5]   Auto-delineation of oropharyngeal clinical target volumes using 3D convolutional neural networks [J].
Cardenas, Carlos E. ;
Anderson, Brian M. ;
Aristophanous, Michalis ;
Yan, Jinzhong ;
Rhee, Dong Joo ;
McCarroll, Rachel E. ;
Mohamed, Abdallah S. R. ;
Kamal, Mona ;
Elgohari, Baher A. ;
Elhalawani, Hesham M. ;
Fuller, Clifton D. ;
Rao, Arvind ;
Garden, Adam S. ;
Court, Laurence E. .
PHYSICS IN MEDICINE AND BIOLOGY, 2018, 63 (21)
[6]   MEASURES OF THE AMOUNT OF ECOLOGIC ASSOCIATION BETWEEN SPECIES [J].
DICE, LR .
ECOLOGY, 1945, 26 (03) :297-302
[7]   Automatic multiorgan segmentation in thorax CT images using U-net-GAN [J].
Dong, Xue ;
Lei, Yang ;
Wang, Tonghe ;
Thomas, Matthew ;
Tang, Leonardo ;
Curran, Walter J. ;
Liu, Tian ;
Yang, Xiaofeng .
MEDICAL PHYSICS, 2019, 46 (05) :2157-2168
[8]  
Engstrom L., ARXIV171202779
[9]   Deep convolutional neural network for segmentation of thoracic organs-at-risk using cropped 3D images [J].
Feng, Xue ;
Qing, Kun ;
Tustison, Nicholas J. ;
Meyer, Craig H. ;
Chen, Quan .
MEDICAL PHYSICS, 2019, 46 (05) :2169-2180
[10]   Automatic Multi-Organ Segmentation on Abdominal CT With Dense V-Networks [J].
Gibson, Eli ;
Giganti, Francesco ;
Hu, Yipeng ;
Bonmati, Ester ;
Bandula, Steve ;
Gurusamy, Kurinchi ;
Davidson, Brian ;
Pereira, Stephen P. ;
Clarkson, Matthew J. ;
Barratt, Dean C. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (08) :1822-1834