Impact of Assimilating GOES-R Geostationary Lightning Mapper Flash Extent Density Data on Severe Convection Forecasts in a Warn-on-Forecast System

被引:4
作者
Wang, Yaping [1 ,2 ]
Yussouf, Nusrat [1 ,2 ,3 ]
Mansell, Edward R. [2 ]
Matilla, Brian C. [1 ,2 ]
Kong, Rong [4 ]
Xue, Ming [3 ,4 ]
Chmielewski, Vanna C. [1 ,2 ]
机构
[1] Univ Oklahoma, Cooperat Inst Mesoscale Meteorol Studies, Norman, OK 73019 USA
[2] NOAA, OAR Natl Severe Storms Lab, Norman, OK 73072 USA
[3] Univ Oklahoma, Sch Meteorol, Norman, OK 73019 USA
[4] Univ Oklahoma, Ctr Anal & Predict Storms, Norman, OK 73019 USA
关键词
Lightning; Numerical analysis/modeling; Numerical weather prediction/forecasting; Data assimilation; Ensembles; KALMAN FILTER ASSIMILATION; SHORT-TERM FORECASTS; WATER-VAPOR; SIMULATED ELECTRIFICATION; PRECIPITATION FORECASTS; IDEALIZED SIMULATIONS; RADAR DATA; PART II; ENSEMBLE; TORNADO;
D O I
10.1175/MWR-D-20-0406.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The Geostationary Operational Environmental Satellite-R (GOES-R) Geostationary Lightning Mapper (GLM) instrument detects total lightning rate at high temporal and spatial resolution over the Americas and adjacent oceanic regions. The GLM observations provide detection and monitoring of deep electrified convection. This study explores the impact of assimilating the GLM-derived flash extent density (FED) on the analyses and short-term forecasts of two severe weather events into an experimental Warn-on-Forecast system (WoFS) using the ensemble Kalman filter data assimilation technique. Sensitivity experiments are conducted using two tornadic severe storm events: one with a line of individual supercells and the other one with both isolated cells and a severe convective line. The control experiment (CTRL) assimilates conventional surface observations and geostationary satellite cloud water path into WoFS. Additional experiments also assimilate either GLM FED or radar data (RAD), or a combination of both (RAD + GLM). It is found that assimilating GLM data in the absence of radar data into the WoFS improves the short-term forecast skill over CTRL in one case, while in the other case it degrades the forecast skill by generating weaker cold pools and overly suppressing convection, mainly owing to assimilating zero FED values in the trailing stratiform regions. Assimilating unexpectedly low FED values in some regions due to low GLM detection efficiency also accounts for the poorer forecasts. Although RAD provides superior forecasts over GLM, the combination RAD +GLM shows further gains in both cases. Additional observation operators should consider different storm types and GLM detection efficiency.
引用
收藏
页码:3217 / 3241
页数:25
相关论文
共 89 条
  • [41] Climatological analyses of LMA data with an open-source lightning flash-clustering algorithm
    Fuchs, Brody R.
    Bruning, Eric C.
    Rutledge, Steven A.
    Carey, Lawrence D.
    Krehbiel, Paul R.
    Rison, William
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2016, 121 (14) : 8625 - 8648
  • [42] Breaking New Ground in Severe Weather Prediction: The 2015 NOAA/Hazardous Weather Testbed Spring Forecasting Experiment
    Gallo, Burkely T.
    Clark, Adam J.
    Jirak, Israel
    Kain, John S.
    Weiss, Steven J.
    Coniglio, Michael
    Knopfmeier, Kent
    Correia, James, Jr.
    Melick, Christopher J.
    Karstens, Christopher D.
    Iyer, Eswar
    Dean, Andrew R.
    Xue, Ming
    Kong, Fanyou
    Jung, Youngsun
    Shen, Feifei
    Thomas, Kevin W.
    Brewster, Keith
    Stratman, Derek
    Carbin, Gregory W.
    Line, William
    Adams-Selin, Rebecca
    Willington, Steve
    [J]. WEATHER AND FORECASTING, 2017, 32 (04) : 1541 - 1568
  • [43] LIGHTNING AND PRECIPITATION HISTORY OF A MICROBURST-PRODUCING STORM
    GOODMAN, SJ
    BUECHLER, DE
    WRIGHT, PD
    RUST, WD
    [J]. GEOPHYSICAL RESEARCH LETTERS, 1988, 15 (11) : 1185 - 1188
  • [44] The GOES-R Geostationary Lightning Mapper (GLM)
    Goodman, Steven J.
    Blakeslee, Richard J.
    Koshak, William J.
    Mach, Douglas
    Bailey, Jeffrey
    Buechler, Dennis
    Carey, Larry
    Schultz, Chris
    Bateman, Monte
    McCaul, Eugene, Jr.
    Stano, Geoffrey
    [J]. ATMOSPHERIC RESEARCH, 2013, 125 : 34 - 49
  • [45] Hakim G. J., 2008, 20 INT LIGHTN DET C
  • [46] Ensemble Kalman filtering
    Houtekamer, P. L.
    Mitchell, Herschel L.
    [J]. QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2005, 131 (613) : 3269 - 3289
  • [47] Exploring the Assimilation of GLM-Derived Water Vapor Mass in a Cycled 3DVAR Framework for the Short-Term Forecasts of High-Impact Convective Events
    Hu, Junjun
    Fierro, Alexandre O.
    Wang, Yunheng
    Gao, Jidong
    Mansell, Edward R.
    [J]. MONTHLY WEATHER REVIEW, 2020, 148 (03) : 1005 - 1028
  • [48] Forecasting High-Impact Weather in Landfalling Tropical Cyclones Using a Warn-on-Forecast System
    Jones, Thomas
    Skinner, Patrick
    Yussouf, Nusrat
    Knopfmeier, Kent
    Reinhart, Anthony
    Dowell, David
    [J]. BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2019, 100 (08) : 1405 - 1417
  • [49] Assimilation of GOES-13 Imager Clear-Sky Water Vapor (6.5 μm) Radiances into a Warn-on-Forecast System
    Jones, Thomas A.
    Wang, Xuguang
    Skinner, Patrick
    Johnson, Aaron
    Wang, Yongming
    [J]. MONTHLY WEATHER REVIEW, 2018, 146 (04) : 1077 - 1107
  • [50] Storm-Scale Data Assimilation and Ensemble Forecasting with the NSSL Experimental Warn-on-Forecast System. Part II: Combined Radar and Satellite Data Experiments
    Jones, Thomas A.
    Knopfmeier, Kent
    Wheatley, Dustan
    Creager, Gerald
    Minnis, Patrick
    Palikonda, Rabindra
    [J]. WEATHER AND FORECASTING, 2016, 31 (01) : 297 - 327