Cluster synchronization in a network of non-identical dynamic systems

被引:17
作者
Wu Jian-She [1 ]
Jiao Li-Cheng [1 ]
Chen Guan-Rong [2 ]
机构
[1] Xidian Univ, Key Lab Intelligent Percept & Image Understanding, Minist Educ China, Xian 710071, Peoples R China
[2] City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
complex network; cluster synchronization; diffusive couplings; Schur's theorem; DELAYED NEURAL-NETWORKS; GLOBAL SYNCHRONIZATION; COMPLEX NETWORKS; CHAOS SYNCHRONIZATION; STABILITY; ARRAY;
D O I
10.1088/1674-1056/20/6/060503
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Cluster synchronization in a network of non-identical dynamic systems is studied in this paper, using two-cluster synchronization for detailed analysis and discussion. The results show that the common intercluster coupling condition is not always needed for the diffusively coupled network. Several sufficient conditions are obtained by using the Schur unitary triangularization theorem, which extends previous results. Some numerical examples are presented for illustration.
引用
收藏
页数:11
相关论文
共 54 条
[1]   Statistical mechanics of complex networks [J].
Albert, R ;
Barabási, AL .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :47-97
[2]  
[Anonymous], 1985, TOPICS MATRIX ANAL
[3]   Synchronization in complex networks [J].
Arenas, Alex ;
Diaz-Guilera, Albert ;
Kurths, Jurgen ;
Moreno, Yamir ;
Zhou, Changsong .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2008, 469 (03) :93-153
[4]   Synchronization of bursting neurons: What matters in the network topology [J].
Belykh, I ;
de Lange, E ;
Hasler, M .
PHYSICAL REVIEW LETTERS, 2005, 94 (18)
[5]   Persistent clusters in lattices of coupled nonidentical chaotic systems [J].
Belykh, I ;
Belykh, V ;
Nevidin, K ;
Hasler, M .
CHAOS, 2003, 13 (01) :165-178
[6]   Blinking model and synchronization in small-world networks with a time-varying coupling [J].
Belykh, IV ;
Belykh, VN ;
Hasler, M .
PHYSICA D-NONLINEAR PHENOMENA, 2004, 195 (1-2) :188-206
[7]   Cluster synchronization in oscillatory networks [J].
Belykh, Vladimir N. ;
Osipov, Grigory V. ;
Petrov, Valentin S. ;
Suykens, Johan A. K. ;
Vandewalle, Joos .
CHAOS, 2008, 18 (03)
[8]   Connection graph stability method for synchronized coupled chaotic systems [J].
Belykh, VN ;
Belykh, IV ;
Hasler, M .
PHYSICA D-NONLINEAR PHENOMENA, 2004, 195 (1-2) :159-187
[9]   The synchronization of chaotic systems [J].
Boccaletti, S ;
Kurths, J ;
Osipov, G ;
Valladares, DL ;
Zhou, CS .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 366 (1-2) :1-101
[10]   Global synchronization in arrays of delayed neural networks with constant and delayed coupling [J].
Cao, JD ;
Li, P ;
Wang, WW .
PHYSICS LETTERS A, 2006, 353 (04) :318-325