An n-dimensional version of Steinhaus' chessboard theorem

被引:10
作者
Tkacz, Przemyslaw [1 ]
Turzanski, Marian [1 ]
机构
[1] Univ Warsaw, Coll Sci Cardinal Stefan Wyszynski, PL-01815 Warsaw, Poland
关键词
cubes; simplex; coloring function; combinatorial cube; minimal barrier; i-connected chain;
D O I
10.1016/j.topol.2007.07.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main result of this paper is an n-dimensional version of the Steinhaus' chessboard theorem. Our theorem implies the Poincare theorem as well as its parametric extension. But it is known that the Poincare theorem is equivalent to the Brouwer Fixed-Point theorem. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:354 / 361
页数:8
相关论文
共 9 条
[1]  
[Anonymous], 2000, ACTA U CAROLIN MATH
[2]   GAME OF HEX AND THE BROUWER FIXED-POINT THEOREM [J].
GALE, D .
AMERICAN MATHEMATICAL MONTHLY, 1979, 86 (10) :818-827
[3]   The Poincare-Miranda theorem [J].
Kulpa, W .
AMERICAN MATHEMATICAL MONTHLY, 1997, 104 (06) :545-550
[4]  
Kulpa W., 2000, ACTA U CAROLIN MATH, V41, P39
[5]  
Kuratowski K., 1968, TOPOLOGY, VII
[6]  
Poincare H., 1883, C. R. Acad. Sci. Paris, V97, P251
[7]  
SHASKIN YA, 1991, FIXED POINTS MATH WO, V2
[8]  
Steinhaus H, 1954, KALEJDOSKOP MATEMATY
[9]  
SUROWKA W, 1993, ANN MATH SIL, V7, P57