Eap45 in mammalian ESCRT-II binds ubiquitin via a phosphoinositide-interacting GLUE domain

被引:140
作者
Slagsvold, T
Aasland, R
Hirano, S
Bache, KG
Raiborg, C
Trambaiolo, D
Wakatsuki, S
Stenmark, H [1 ]
机构
[1] Norwegian Radium Hosp, Dept Biochem, N-0310 Oslo, Norway
[2] Univ Bergen, Dept Mol Biol, HIB, N-5020 Bergen, Norway
[3] KEK, IMSS, Struct Biol Res Ctr, Photon Factory, Tsukuba, Ibaraki 3050801, Japan
关键词
D O I
10.1074/jbc.M501510200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Ubiquitination serves as a key sorting signal in the lysosomal degradation of endocytosed receptors through the ability of ubiquitinated membrane proteins to be recognized and sorted by ubiquitin-binding proteins along the endocytic route. The ESCRT-II complex in yeast contains one such protein, Vps36, which harbors a ubiquitin-binding NZF domain and is required for vacuolar sorting of ubiquitinated membrane proteins. Surprisingly, the presumptive mammalian ortholog Eap45 lacks the ubiquitin-binding module of Vps36, and it is thus not clear whether mammalian ESCRT-II functions to bind ubiquitinated cargo. In this paper, we provide evidence that Eap45 contains a novel ubiquitin-binding domain, GLUE (GRAM-like ubiquitin-binding in Eap45), which binds ubiquitin with similar affinity and specificity as other ubiquitin-binding domains. The GLUE domain shares similarities in its primary and predicted secondary structures to phosphoinositide-binding GRAM and PH domains. Accordingly, we find that Eap45 binds to a subset of 3-phosphoinositides, suggesting that ubiquitin recognition could be coordinated with phosphoinositide binding. Furthermore, we show that Eap45 colocalizes with ubiquitinated proteins on late endosomes. These results are consistent with a role for Eap45 in endosomal sorting of ubiquitinated cargo.
引用
收藏
页码:19600 / 19606
页数:7
相关论文
共 48 条
[1]   Ubiquitin interactions of NZF zinc fingers [J].
Alam, SL ;
Sun, J ;
Payne, M ;
Welch, BD ;
Blake, BK ;
Davis, DR ;
Meyer, HH ;
Emr, SD ;
Sundquist, WI .
EMBO JOURNAL, 2004, 23 (07) :1411-1421
[2]   BASIC LOCAL ALIGNMENT SEARCH TOOL [J].
ALTSCHUL, SF ;
GISH, W ;
MILLER, W ;
MYERS, EW ;
LIPMAN, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) :403-410
[3]   Endosome-associated complex, ESCRT-II, recruits transport machinery for protein sorting at the multivesicular body [J].
Babst, M ;
Katzmann, DJ ;
Snyder, WB ;
Wendland, B ;
Emr, SD .
DEVELOPMENTAL CELL, 2002, 3 (02) :283-289
[4]   ESCRT-III: An endosome-associated heterooligomeric protein complex required for MVB sorting [J].
Babst, M ;
Katzmann, DJ ;
Estepa-Sabal, EJ ;
Meerloo, T ;
Emr, SD .
DEVELOPMENTAL CELL, 2002, 3 (02) :271-282
[5]   Hrs regulates multivesicular body formation via ESCRT recruitment to endosomes [J].
Bache, KG ;
Brech, A ;
Mehlum, A ;
Stenmark, H .
JOURNAL OF CELL BIOLOGY, 2003, 162 (03) :435-442
[6]  
Bateman A, 2004, NUCLEIC ACIDS RES, V32, pD138, DOI [10.1093/nar/gkp985, 10.1093/nar/gkr1065, 10.1093/nar/gkh121]
[7]   Crystal structure of a phosphoinositide phosphatase, MTMR2: Insights into myotubular myopathy and Charcot-Marie-Tooth syndrome [J].
Begley, MJ ;
Taylor, GS ;
Kim, SA ;
Veine, DM ;
Dixon, JE ;
Stuckey, JA .
MOLECULAR CELL, 2003, 12 (06) :1391-1402
[8]   Membrane association of myotubularin-related protein 2 is mediated by a pleckstrin homology-GRAM domain and a coiled-coil dimerization module [J].
Berger, P ;
Schaffitzel, C ;
Berger, I ;
Ban, N ;
Suter, U .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (21) :12177-12182
[9]   Vps27-Hse1 and ESCRT-I complexes cooperate to increase efficiency of sorting ubiquitinated proteins at the endosome [J].
Bilodeau, PS ;
Winistorfer, SC ;
Kearney, WR ;
Robertson, AD ;
Piper, RC .
JOURNAL OF CELL BIOLOGY, 2003, 163 (02) :237-243
[10]   Mammalian class E vps proteins recognize ubiquitin and act in the removal of endosomal protein-ubiquitin conjugates [J].
Bishop, N ;
Horman, A ;
Woodman, P .
JOURNAL OF CELL BIOLOGY, 2002, 157 (01) :91-101