Convolution quadrature Galerkin boundary element method for the wave equation with reduced quadrature weight computation

被引:5
作者
Chappell, David J. [1 ]
机构
[1] Univ Nottingham, Sch Math Sci, Nottingham NG7 2RD, England
关键词
boundary element method; wave equation; convolution quadrature; DISCRETIZED OPERATIONAL CALCULUS; TIME MARCHING METHODS; INTEGRAL-EQUATIONS; SCATTERING; STABILITY; PROPAGATION; FORMULATION; BEM;
D O I
10.1093/imanum/drp045
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The numerical solution of the wave equation on three-dimensional domains is calculated using the convolution quadrature method for the time discretization and a Galerkin boundary element method for the space discretization. A computation-reduction strategy is developed whose parameters are given by an a priori error analysis. This gives a maximum for the number of discrete convolution matrices that must be computed when a particular time step is employed. Numerical examples are then presented to illustrate the predicted convergence results and the practicality of the methods.
引用
收藏
页码:640 / 666
页数:27
相关论文
共 50 条
  • [41] On the energetic Galerkin boundary element method applied to interior wave propagation problems
    Aimi, A.
    Diligenti, M.
    Guardasoni, C.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (07) : 1746 - 1754
  • [42] An appropriate quadrature rule for the analysis of plane crack problems in the boundary-element method
    Theotokoglou, EE
    Tsamasphyros, G
    COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 2001, 17 (10): : 691 - 699
  • [43] Runge-Kutta convolution quadrature for operators arising in wave propagation
    Banjai, Lehel
    Lubich, Christian
    Melenk, Jens Markus
    NUMERISCHE MATHEMATIK, 2011, 119 (01) : 1 - 20
  • [44] Wavelets and convolution quadrature for the efficient solution of a 2D space-time BIE for the wave equation
    Bertoluzza, S.
    Falletta, S.
    Scuderi, L.
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 366
  • [45] Reduced-basis boundary element method for fast electromagnetic field computation
    Shi, Yating
    Chen, Xiuguo
    Tan, Yinyin
    Jiang, Hao
    Liu, Shiyuan
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2017, 34 (12) : 2231 - 2242
  • [46] Convolution quadrature time discretization of fractional diffusion-wave equations
    Cuesta, E
    Lubich, C
    Palencia, C
    MATHEMATICS OF COMPUTATION, 2006, 75 (254) : 673 - 696
  • [47] Boundary element quadrature schemes for multi- and many-core architectures
    Zapletal, Jan
    Merta, Michal
    Maly, Lukas
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (01) : 157 - 173
  • [48] An efficient quadrature for 2.5D boundary element calculations
    Kasess, Christian H.
    Kreuzer, Wolfgang
    Waubke, Holger
    JOURNAL OF SOUND AND VIBRATION, 2016, 382 : 213 - 226
  • [49] Reduced quadrature for Finite Element and Isogeometric methods in nonlinear solids
    Li, Weican
    Moutsanidis, Georgios
    Behzadinasab, Masoud
    Hillman, Michael
    Bazilevs, Yuri
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 399
  • [50] A nodal discontinuous Galerkin finite element method for the poroelastic wave equation
    Shukla, Khemraj
    Hesthaven, Jan S.
    Carcione, Jose M.
    Ye, Ruichao
    de la Puente, Josep
    Jaiswal, Priyank
    COMPUTATIONAL GEOSCIENCES, 2019, 23 (03) : 595 - 615