Convolution quadrature Galerkin boundary element method for the wave equation with reduced quadrature weight computation

被引:5
作者
Chappell, David J. [1 ]
机构
[1] Univ Nottingham, Sch Math Sci, Nottingham NG7 2RD, England
关键词
boundary element method; wave equation; convolution quadrature; DISCRETIZED OPERATIONAL CALCULUS; TIME MARCHING METHODS; INTEGRAL-EQUATIONS; SCATTERING; STABILITY; PROPAGATION; FORMULATION; BEM;
D O I
10.1093/imanum/drp045
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The numerical solution of the wave equation on three-dimensional domains is calculated using the convolution quadrature method for the time discretization and a Galerkin boundary element method for the space discretization. A computation-reduction strategy is developed whose parameters are given by an a priori error analysis. This gives a maximum for the number of discrete convolution matrices that must be computed when a particular time step is employed. Numerical examples are then presented to illustrate the predicted convergence results and the practicality of the methods.
引用
收藏
页码:640 / 666
页数:27
相关论文
共 50 条
  • [21] Inmost singularities and appropriate quadrature rules in the boundary element method
    Theotokoglou, E. E.
    Tsamasphyros, G.
    BOUNDARY ELEMENTS AND OTHER MESH REDUCTION METHODS XXIX, 2007, 44 : 141 - +
  • [22] Convolution quadrature methods for 3D EM wave scattering analysis
    Geranmayeh, Amir
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2014, 43 : 50 - 55
  • [23] Convolution Quadrature Time-Domain Boundary Element Method for Viscoelastic Wave Scattering by Many Cavities in a 3D Infinite Space
    Saitoh, Takahiro
    Takeda, Haruhiko
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2022, 19 (07)
  • [24] Fast convolution quadrature based impedance boundary conditions
    Hiptmair, Ralf
    Lopez-Fernandez, Maria
    Paganini, Alberto
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 263 : 500 - 517
  • [25] Calderon Strategies for the Convolution Quadrature Time-Domain Electric Field Integral Equation
    Cordel, Pierrick
    Dely, Alexandre
    Merlini, Adrien
    Andriulli, Francesco P.
    IEEE OPEN JOURNAL OF ANTENNAS AND PROPAGATION, 2024, 5 (02): : 379 - 388
  • [26] Numerical solution of exterior Maxwell problems by Galerkin BEM and Runge-Kutta convolution quadrature
    Ballani, J.
    Banjai, L.
    Sauter, S.
    Veit, A.
    NUMERISCHE MATHEMATIK, 2013, 123 (04) : 643 - 670
  • [27] STABILITY OF ALE DISCONTINUOUS GALERKIN METHOD WITH RADAU QUADRATURE
    Vlasak, Miloslav
    PROGRAMS AND ALGORITHMS OF NUMERICAL MATHEMATICS 19, 2019, : 169 - 176
  • [28] Discontinuous Galerkin finite element method for the wave equation
    Grote, Marcus J.
    Schneebeli, Anna
    Schoetzau, Dominik
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (06) : 2408 - 2431
  • [29] Convolution quadrature time-domain boundary element method for 2-D fluid-saturated porous media
    Saitoh, T.
    Chikazawa, F.
    Hirose, S.
    APPLIED MATHEMATICAL MODELLING, 2014, 38 (15-16) : 3724 - 3740
  • [30] Machine Learning Enhanced Boundary Element Method: Prediction of Gaussian Quadrature Points
    Cheng, Ruhui
    Yin Xiaomeng
    Chen, Leilei
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2022, 131 (01): : 445 - 464