Strong A∞-weights are A∞-weights on metric spaces

被引:0
作者
Korte, Riikka [1 ]
Kansanen, Outi Elina [2 ]
机构
[1] Univ Helsinki, Dept Math & Stat, FI-00014 Helsinki, Finland
[2] KTH, Dept Math, SE-10044 Stockholm, Sweden
关键词
Metric doubling measure; metric spaces; Muckenhoupt weights; strong A(infinity)-weight; SOBOLEV; MAPPINGS; WEIGHTS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that every strong A(infinity)-weight is a Muckenhoupt weight in Ahlfors-regular metric measure spaces that support a Poincare inequality. We also explore the relations between various definitions for A(infinity)-weights in this setting, since some of these characterizations are needed in the proof of the main result.
引用
收藏
页码:335 / 354
页数:20
相关论文
共 22 条
[1]   Mumford-Shah-type functionals associated with doubling metric measures [J].
Baldi, A ;
Franchi, B .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2005, 135 :1-23
[2]  
BJORN A, EMS TRACTS IN PRESS
[3]  
Björn J, 2002, ILLINOIS J MATH, V46, P383
[4]  
Bonk M, 2004, CONTEMP MATH, V355, P77
[5]   Logarithmic potentials, quasiconformal flows, and Q-curvature [J].
Bonk, Mario ;
Heinonen, Juha ;
Saksman, Eero .
DUKE MATHEMATICAL JOURNAL, 2008, 142 (02) :197-239
[6]  
Costea S, 2007, REV MAT IBEROAM, V23, P1067
[7]  
Costea S, 2009, HOUSTON J MATH, V35, P1233
[8]  
David G., 1990, Lecture Notes in Pure and Appl. Math., V122, P101
[9]   Regularity for quasilinear degenerate elliptic equations [J].
Di Fazio, G. ;
Zamboni, P. .
MATHEMATISCHE ZEITSCHRIFT, 2006, 253 (04) :787-803
[10]  
Di Fazio G, 2005, MATEMATICHE, V60, P513