An efficient method to determine sample size in oversampling based on classification complexity for imbalanced data

被引:17
|
作者
Lee, Dohyun [1 ]
Kim, Kyoungok [2 ]
机构
[1] Seoul Natl Univ Sci & Technol Seoul, Dept Data Sci, 232 Gongreungno, Seoul 01811, South Korea
[2] Seoul Natl Univ Sci & Technol Seoul, Dept Ind Engn, 232 Gongreungno, Seoul 01811, South Korea
基金
新加坡国家研究基金会;
关键词
Class imbalance; Oversampling; Sampling size; Adaptive boosting; Ensemble learning; DATA-SETS; SMOTE; ENSEMBLES;
D O I
10.1016/j.eswa.2021.115442
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Resampling, one of the approaches to handle class imbalance, is widely used alone or in combination with other approaches, such as cost-sensitive learning and ensemble learning because of its simplicity and independence in learning algorithms. Oversampling methods, in particular, alleviate class imbalance by increasing the size of the minority class. However, previous studies related to oversampling generally have focused on where to add new samples, how to generate new samples, and how to prevent noise and they rarely have investigated how much sampling is sufficient. In many cases, the oversampling size is set so that the minority class has the same size as the majority class. This setting only considers the size of the classes in sample size determination, and the balanced training set can induce overfitting with the addition of too many minority samples. Moreover, the effectiveness of oversampling can be improved by adding synthetics into the appropriate locations. To address this issue, this study proposes a method to determine the oversampling size less than the sample size needed to obtain a balance between classes, while considering not only the absolute imbalance but also the difficulty of classification in a dataset on the basis of classification complexity. The effectiveness of the proposed sample size in oversampling is evaluated using several boosting algorithms with different oversampling methods for 16 imbalanced datasets. The results show that the proposed sample size achieves better classification performance than the sample size for attaining class balance.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] A novel oversampling and feature selection hybrid algorithm for imbalanced data classification
    Feng, Fang
    Li, Kuan-Ching
    Yang, Erfu
    Zhou, Qingguo
    Han, Lihong
    Hussain, Amir
    Cai, Mingjiang
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (03) : 3231 - 3267
  • [32] A Comparison of Undersampling, Oversampling, and SMOTE Methods for Dealing with Imbalanced Classification in Educational Data Mining
    Wongvorachan, Tarid
    He, Surina
    Bulut, Okan
    INFORMATION, 2023, 14 (01)
  • [33] Novel Oversampling Algorithm for Handling Imbalanced Data Classification Novel Oversampling Algorithm
    More, Anjali S.
    Rana, Dipti P.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (08) : 491 - 496
  • [34] Perturbation-based oversampling technique for imbalanced classification problems
    Jianjun Zhang
    Ting Wang
    Wing W. Y. Ng
    Witold Pedrycz
    International Journal of Machine Learning and Cybernetics, 2023, 14 : 773 - 787
  • [35] Radial-Based Approach to Imbalanced Data Oversampling
    Koziarski, Michal
    Krawczyk, Bartosz
    Wozniak, Michal
    HYBRID ARTIFICIAL INTELLIGENT SYSTEMS, HAIS 2017, 2017, 10334 : 318 - 327
  • [36] Clustering-based improved adaptive synthetic minority oversampling technique for imbalanced data classification
    Jin, Dian
    Xie, Dehong
    Liu, Di
    Gong, Murong
    INTELLIGENT DATA ANALYSIS, 2023, 27 (03) : 635 - 652
  • [37] Evolutionary Mahalanobis Distance-Based Oversampling for Multi-Class Imbalanced Data Classification
    Yao, Leehter
    Lin, Tung-Bin
    SENSORS, 2021, 21 (19)
  • [38] A Synthetic Minority Oversampling Technique Based on Gaussian Mixture Model Filtering for Imbalanced Data Classification
    Xu, Zhaozhao
    Shen, Derong
    Kou, Yue
    Nie, Tiezheng
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (03) : 3740 - 3753
  • [39] A non-parameter oversampling approach for imbalanced data classification based on hybrid natural neighbors
    Lin, Junyue
    Liang, Lu
    APPLIED INTELLIGENCE, 2025, 55 (05)
  • [40] Similar classes latent distribution modelling-based oversampling method for imbalanced image classification
    Ye, Wei
    Dong, Minggang
    Wang, Yan
    Gan, Guojun
    Liu, Deao
    JOURNAL OF SUPERCOMPUTING, 2023, 79 (09) : 9985 - 10019