Integrative Identification of Arabidopsis Mitochondrial Proteome and Its Function Exploitation through Protein Interaction Network

被引:24
作者
Cui, Jian [1 ,2 ,3 ,6 ]
Liu, Jinghua [4 ,6 ]
Li, Yuhua [1 ,2 ,6 ]
Shi, Tieliu [1 ,3 ,5 ,6 ]
机构
[1] E China Normal Univ, Coll Life Sci, Ctr Bioinformat, Shanghai 200062, Peoples R China
[2] E China Normal Univ, Inst Biomed Sci, Shanghai 200062, Peoples R China
[3] NE Forestry Univ, Coll Life Sci, Harbin, Heilongjiang, Peoples R China
[4] So Med Univ, Guangzhou, Guangdong, Peoples R China
[5] Chinese Acad Sci, Shanghai Informat Ctr Life Sci, Shanghai, Peoples R China
[6] NE Forestry Univ, Daqing Inst Biotechnol, Daqing, Heilongjiang, Peoples R China
来源
PLOS ONE | 2011年 / 6卷 / 01期
基金
中国国家自然科学基金; 国家高技术研究发展计划(863计划);
关键词
SUBCELLULAR-LOCALIZATION; LOCALIZING PROTEINS; ELECTRON-TRANSPORT; EXPRESSION DATA; CELL; PREDICTION; SEQUENCE; STRESS; BIOSYNTHESIS; DATABASE;
D O I
10.1371/journal.pone.0016022
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Mitochondria are major players on the production of energy, and host several key reactions involved in basic metabolism and biosynthesis of essential molecules. Currently, the majority of nucleus-encoded mitochondrial proteins are unknown even for model plant Arabidopsis. We reported a computational framework for predicting Arabidopsis mitochondrial proteins based on a probabilistic model, called Naive Bayesian Network, which integrates disparate genomic data generated from eight bioinformatics tools, multiple orthologous mappings, protein domain properties and co-expression patterns using 1,027 microarray profiles. Through this approach, we predicted 2,311 candidate mitochondrial proteins with 84.67% accuracy and 2.53% FPR performances. Together with those experimental confirmed proteins, 2,585 mitochondria proteins (named CoreMitoP) were identified, we explored those proteins with unknown functions based on protein-protein interaction network (PIN) and annotated novel functions for 26.65% CoreMitoP proteins. Moreover, we found newly predicted mitochondrial proteins embedded in particular subnetworks of the PIN, mainly functioning in response to diverse environmental stresses, like salt, draught, cold, and wound etc. Candidate mitochondrial proteins involved in those physiological acitivites provide useful targets for further investigation. Assigned functions also provide comprehensive information for Arabidopsis mitochondrial proteome.
引用
收藏
页数:16
相关论文
共 86 条
[31]   Support vector machine approach for protein subcellular localization prediction [J].
Hua, SJ ;
Sun, ZR .
BIOINFORMATICS, 2001, 17 (08) :721-728
[32]   Support vector machines for predicting apoptosis proteins types [J].
Huang, J ;
Shi, F .
ACTA BIOTHEORETICA, 2005, 53 (01) :39-47
[33]   Global analysis of protein localization in budding yeast [J].
Huh, WK ;
Falvo, JV ;
Gerke, LC ;
Carroll, AS ;
Howson, RW ;
Weissman, JS ;
O'Shea, EK .
NATURE, 2003, 425 (6959) :686-691
[34]   Exploration, normalization, and summaries of high density oligonucleotide array probe level data [J].
Irizarry, RA ;
Hobbs, B ;
Collin, F ;
Beazer-Barclay, YD ;
Antonellis, KJ ;
Scherf, U ;
Speed, TP .
BIOSTATISTICS, 2003, 4 (02) :249-264
[35]   The critical role of Arabidopsis electron-transfer flavoprotein:: Ubiquinone oxidoreductase during dark-induced starvation [J].
Ishizaki, K ;
Larson, TR ;
Schauer, N ;
Fernie, AR ;
Graham, IA ;
Leaver, CJ .
PLANT CELL, 2005, 17 (09) :2587-2600
[36]   Calcium influx through receptor-operated channel induces mitochondria-triggered paraptotic cell death [J].
Jambrina, E ;
Alonso, R ;
Alcalde, M ;
Rodríguez, MD ;
Serrano, A ;
Martínez-A, C ;
García-Sancho, J ;
Izquierdo, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (16) :14134-14145
[37]   Complexity, cross talk and integration of plant MAP kinase signalling [J].
Jonak, C ;
Ökrész, L ;
Bögre, L ;
Hirt, H .
CURRENT OPINION IN PLANT BIOLOGY, 2002, 5 (05) :415-424
[38]   Mitochondrial gene history and mRNA localization: is there a correlation? [J].
Karlberg, EOL ;
Andersson, SGE .
NATURE REVIEWS GENETICS, 2003, 4 (05) :391-397
[39]   Analysis of the genome sequence of the flowering plant Arabidopsis thaliana [J].
Kaul, S ;
Koo, HL ;
Jenkins, J ;
Rizzo, M ;
Rooney, T ;
Tallon, LJ ;
Feldblyum, T ;
Nierman, W ;
Benito, MI ;
Lin, XY ;
Town, CD ;
Venter, JC ;
Fraser, CM ;
Tabata, S ;
Nakamura, Y ;
Kaneko, T ;
Sato, S ;
Asamizu, E ;
Kato, T ;
Kotani, H ;
Sasamoto, S ;
Ecker, JR ;
Theologis, A ;
Federspiel, NA ;
Palm, CJ ;
Osborne, BI ;
Shinn, P ;
Conway, AB ;
Vysotskaia, VS ;
Dewar, K ;
Conn, L ;
Lenz, CA ;
Kim, CJ ;
Hansen, NF ;
Liu, SX ;
Buehler, E ;
Altafi, H ;
Sakano, H ;
Dunn, P ;
Lam, B ;
Pham, PK ;
Chao, Q ;
Nguyen, M ;
Yu, GX ;
Chen, HM ;
Southwick, A ;
Lee, JM ;
Miranda, M ;
Toriumi, MJ ;
Davis, RW .
NATURE, 2000, 408 (6814) :796-815
[40]   The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses [J].
Kilian, Joachim ;
Whitehead, Dion ;
Horak, Jakub ;
Wanke, Dierk ;
Weinl, Stefan ;
Batistic, Oliver ;
D'Angelo, Cecilia ;
Bornberg-Bauer, Erich ;
Kudla, Joerg ;
Harter, Klaus .
PLANT JOURNAL, 2007, 50 (02) :347-363