Dual-phase spinel Li4Ti5O12/anatase TiO2 nanosheet anchored 3D reduced graphene oxide aerogel scaffolds as self-supporting electrodes for high-performance Na- and Li-ion batteries

被引:11
作者
Tian, Ye [1 ]
Xu, Guobao [1 ]
Wu, Zelin [1 ]
Zhong, Jianxin [1 ]
Yang, Liwen [1 ]
机构
[1] Xiangtan Univ, Sch Phys & Optoelect, Hunan Key Lab Micronano Energy Mat & Devices, Xiangtan 411105, Hunan, Peoples R China
来源
RSC ADVANCES | 2017年 / 7卷 / 83期
基金
中国国家自然科学基金;
关键词
ANODE MATERIAL; ELECTROCHEMICAL PROPERTIES; DOPED LI4TI5O12; RATE CAPABILITY; ENERGY-STORAGE; LITHIUM; COMPOSITE; CAPACITY; ARRAYS; NANOCRYSTALS;
D O I
10.1039/c7ra09343h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Self-supporting electrodes consisting of dual-phase spinel Li4Ti5O12/anatase TiO2 nanosheets and 3D reduced graphene oxide (RGO) aerogel for lithium ion batteries (LIBs) and sodium ion batteries (SIBs) were prepared via facile hetero-assembly, freeze-drying, mechanical compression and annealing. The 3D RGO aerogel acts as both conductive medium and self-supporting scaffold for anchored dual-phase nanosheets. The synergistic effect between the dual-phase nanosheets and the 3D highly conductive interconnected RGO network not only guarantees rapid reaction kinetics and strong structural stability of the electrodes during ion insertion/extraction, but also provides abundant accommodation for additional interfacial Li/Na storage. The self-supporting electrodes have desirable electrochemical performance such as a high reversible capacity (similar to 200/180 mA h g(-1) for LIB/SIB at 1C/0.1C), good rate capability (similar to 141/117 mA h g(-1) for LIB/SIB at 30C/10C) and superior cyclic performance (similar to 154/101 mA h g(-1) for LIB/SIB at 10C/6C after 1000/700 cycles). Our results have great potential in constructing self-supporting RGO electrodes embedded with anode materials for LIB and SIB applications.
引用
收藏
页码:52702 / 52711
页数:10
相关论文
共 47 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]  
Augustyn V, 2013, NAT MATER, V12, P518, DOI [10.1038/NMAT3601, 10.1038/nmat3601]
[3]   Multilayered Si Nanoparticle/Reduced Graphene Oxide Hybrid as a High-Performance Lithium-Ion Battery Anode [J].
Chang, Jingbo ;
Huang, Xingkang ;
Zhou, Guihua ;
Cui, Shumao ;
Hallac, Peter B. ;
Jiang, Junwei ;
Hurley, Patrick T. ;
Chen, Junhong .
ADVANCED MATERIALS, 2014, 26 (05) :758-764
[4]   Integrated Intercalation-Based and Interfacial Sodium Storage in Graphene-Wrapped Porous Li4Ti5O12 Nanofibers Composite Aerogel [J].
Chen, Chaoji ;
Xu, Henghui ;
Zhou, Tengfei ;
Guo, Zaiping ;
Chen, Lineng ;
Yan, Mengyu ;
Mai, Liqiang ;
Hu, Pei ;
Cheng, Shijie ;
Huang, Yunhui ;
Xie, Jia .
ADVANCED ENERGY MATERIALS, 2016, 6 (13)
[5]   Copper-Doped Dual Phase Li4Ti5O12-TiO2 Nanosheets as High-Rate and Long Cycle Life Anodes for High-Power Lithium-Ion Batteries [J].
Chen, Chengcheng ;
Huang, Yanan ;
An, Cuihua ;
Zhang, Hao ;
Wang, Yijing ;
Jiao, Lifang ;
Yuan, Huatang .
CHEMSUSCHEM, 2015, 8 (01) :114-122
[6]   Self-supported Li4Ti5O12 nanosheet arrays for lithium ion batteries with excellent rate capability and ultralong cycle life [J].
Chen, Shuai ;
Xin, Yuelong ;
Zhou, Yiyang ;
Ma, Yurong ;
Zhou, Henghui ;
Qi, Limin .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (06) :1924-1930
[7]   New Approaches for High Energy Density Lithium-Sulfur Battery Cathodes [J].
Evers, Scott ;
Nazar, Linda F. .
ACCOUNTS OF CHEMICAL RESEARCH, 2013, 46 (05) :1135-1143
[8]   Ether-based nonflammable electrolyte for room temperature sodium battery [J].
Feng, Jinkui ;
Zhang, Zhen ;
Li, Lifei ;
Yang, Jian ;
Xiong, Shenglin ;
Qian, Yitai .
JOURNAL OF POWER SOURCES, 2015, 284 :222-226
[9]   Ultrathin Li4Ti5O12 Nanosheets as Anode Materials for Lithium and Sodium Storage [J].
Feng, Xuyong ;
Zou, Hailin ;
Xiang, Hongfa ;
Guo, Xin ;
Zhou, Tianpei ;
Wu, Yucheng ;
Xu, Wu ;
Yan, Pengfei ;
Wang, Chongmin ;
Zhang, Ji-Guang ;
Yu, Yan .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (26) :16718-16726
[10]   Li4Ti5O12-TiO2 nanowire arrays constructed with stacked nanocrystals for high-rate lithium and sodium ion batteries [J].
Gao, Lin ;
Wang, Lichuan ;
Dai, Sirui ;
Cao, Minglei ;
Zhong, Zhicheng ;
Shen, Yan ;
Wang, Mingkui .
JOURNAL OF POWER SOURCES, 2017, 344 :223-232