Layer groups: Brillouin-zone and crystallographic databases on the Bilbao Crystallographic Server

被引:11
作者
de la Flor, Gemma [1 ]
Souvignier, Bernd [2 ]
Madariaga, Gotzon [3 ]
Aroyo, Mois, I [3 ]
机构
[1] Karlsruhe Inst Technol, Inst Appl Geosci, Karlsruhe, Germany
[2] Radboud Univ Nijmegen, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands
[3] Univ Pais Vasco UPV EHU, Dept Fis, Leioa, Spain
来源
ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES | 2021年 / 77卷
关键词
Bilbao Crystallographic Server; layer groups; Brillouin-zone database; REPRESENTATIONS;
D O I
10.1107/S205327332100783X
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The section of the Bilbao Crystallographic Server (https://www.cryst.ehu.es/) dedicated to subperiodic groups contains crystallographic and Brillouin-zone databases for the layer groups. The crystallographic databases include the generators/general positions (GENPOS), Wyckoff positions (WYCKPOS) and maximal subgroups (MAXSUB). The Brillouin-zone database (LKVEC) offers k-vector tables and Brillouin-zone figures of all 80 layer groups which form the background of the classification of their irreducible representations. The symmetry properties of the wavevectors are described applying the so-called reciprocal-space-group approach and this classification scheme is compared with that of Litvin & Wike [(1991), Character Tables and Compatibility Relations of the Eighty Layer Groups and Seventeen Plane Groups. New York: Plenum Press]. The specification of independent parameter ranges of k vectors in the representation domains of the Brillouin zones provides a solution to the problems of uniqueness and completeness of layer-group representations. The Brillouin-zone figures and k-vector tables are described in detail and illustrated by several examples.
引用
收藏
页码:559 / 571
页数:13
相关论文
共 23 条
  • [1] [Anonymous], 2016, INT TABLES CRYSTALLO, DOI DOI 10.1107/97809553602060000114
  • [2] [Anonymous], 1988, Isotropy subgroups of the 230 crystallographic Space Groups
  • [3] [Anonymous], 1967, Tables of Irreducible Representations of Space Groups and Co-representations of Magnetic Space Groups
  • [4] Aroyo MI, 2011, BULG CHEM COMMUN, V43, P183
  • [5] Bilbao crystallographic server: I. Databases and crystallographic computing programs
    Aroyo, MI
    Perez-Mato, JM
    Capillas, C
    Kroumova, E
    Ivantchev, S
    Madariaga, G
    Kirov, A
    Wondratschek, H
    [J]. ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 2006, 221 (01): : 15 - 27
  • [6] CRYSTALLOGRAPHIC VIEWPOINTS IN THE CLASSIFICATION OF SPACE-GROUP REPRESENTATIONS
    AROYO, MI
    WONDRATSCHEK, H
    [J]. ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 1995, 210 (04): : 243 - 254
  • [7] Brillouin-zone database on the Bilbao Crystallographic Server
    Aroyo, Mois I.
    Orobengoa, Danel
    de la Flor, Gemma
    Tasci, Emre S.
    Perez-Mato, J. Manuel
    Wondratschek, Hans
    [J]. ACTA CRYSTALLOGRAPHICA SECTION A, 2014, 70 : 126 - 137
  • [8] Boyle L. L., 1986, P 14 INT C GROUP THE, P405
  • [9] Bradley CJ, 1972, The mathematical theory of symmetry in solids: representation theory for point groups and space groups
  • [10] Cracknell A. P., 1979, KRONECKER PRODUCT TA, V1