Solitary and periodic wave solutions of higher-dimensional conformable time-fractional differential equations using the (G′/G, 1/G)-expansion method

被引:0
作者
Al-Shawba, Altaf A. [1 ]
Abdullah, Farah A. [1 ]
Gepreel, Khaled A. [2 ,3 ]
Azmi, Amirah [1 ]
机构
[1] Univ Sains Malaysia, Sch Math Sci, Usm Penang, Malaysia
[2] Taif Univ, Dept Fac Sci, Al Hawiyah, Saudi Arabia
[3] Zagazig Univ, Math Dept, Fac Sci, Zagazig, Egypt
来源
ADVANCES IN DIFFERENCE EQUATIONS | 2018年
关键词
(G; '/G; 1/G)-expansion method; Conformable fractional derivative; Exact solutions; (2+1)-dimensional time-fractional biological population model; (3+1)-dimensional time-fractional KdV-Zakharov-Kuznetsov equation; CLOSED-FORM SOLUTIONS; BURGERS-EQUATION; SOLITONS;
D O I
10.1186/s13662-018-1814-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the two variables (G'/G, 1/G)-expansion method is applied to obtain new exact solutions with parameters of higher-dimensional nonlinear time-fractional differential equations (NTFDEs) in the sense of the conformable fractional derivative. To clarify the veracity of this method, it is implemented in nonlinear (2 + 1)-dimensional time-fractional biological population (BP) model and nonlinear (3 + 1)-dimensional KdV-Zakharov-Kuznetsov (KdV-ZK) equation with time-fractional derivative. When the parameters take some special values, the solitary and periodic solutions are obtained from the hyperbolic and trigonometric function solutions.
引用
收藏
页数:15
相关论文
共 64 条
  • [1] On conformable fractional calculus
    Abdeljawad, Thabet
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 279 : 57 - 66
  • [2] Closed form solutions of two time fractional nonlinear wave equations
    Akbar, M. Ali
    Ali, Norhashidah Hj Mohd
    Roy, Ripan
    [J]. RESULTS IN PHYSICS, 2018, 9 : 1031 - 1039
  • [3] Akbar MA, 2017, COGENT MATH, V4, DOI 10.1080/23311835.2017.1282577
  • [4] Auxiliary equation method for time-fractional differential equations with conformable derivative
    Akbulut, Arzu
    Kaplan, Melike
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (03) : 876 - 882
  • [5] A class of traveling wave solutions for space-time fractional biological population model in mathematical physics
    Akram, G.
    Batool, F.
    [J]. INDIAN JOURNAL OF PHYSICS, 2017, 91 (10) : 1145 - 1148
  • [6] Soliton solutions of (2+1)-dimensional time-fractional Zoomeron equation
    Aksoy, Esin
    Cevikel, Adem C.
    Bekir, Ahmet
    [J]. OPTIK, 2016, 127 (17): : 6933 - 6942
  • [7] Exponential rational function method for space-time fractional differential equations
    Aksoy, Esin
    Kaplan, Melike
    Bekir, Ahmet
    [J]. WAVES IN RANDOM AND COMPLEX MEDIA, 2016, 26 (02) : 142 - 151
  • [8] Travelling Wave Solutions for Fractional Boussinesq Equation Using Modified (G′/G) Expansion Method
    Al-Shawba, Altaf A.
    Abdullah, Farah Aini
    Azmi, Amirah
    [J]. PROCEEDING OF THE 25TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM25): MATHEMATICAL SCIENCES AS THE CORE OF INTELLECTUAL EXCELLENCE, 2018, 1974
  • [9] Abundant closed form solutions of the conformable time fractional Sawada-Kotera-Ito equation using (G′/G)-expansion method
    Al-Shawba, Altaf Abdulkarem
    Gepreel, K. A.
    Abdullah, F. A.
    Azmi, A.
    [J]. RESULTS IN PHYSICS, 2018, 9 : 337 - 343
  • [10] New exact solitary wave solutions for the extended (3
    Ali, Khalid K.
    Nuruddeen, R., I
    Hadhoud, Adel R.
    [J]. RESULTS IN PHYSICS, 2018, 9 : 12 - 16