Diagnostic accuracy of undernutrition codes in hospital administrative discharge database: improvements needed

被引:9
作者
Khalatbari-Soltani, Saman [1 ,2 ]
Waeber, Gerard [2 ]
Marques-Vidal, Pedro [2 ]
机构
[1] Inst Social & Prevent Med, Lausanne, Switzerland
[2] Lausanne Univ Hosp, Dept Internal Med, Lausanne, Switzerland
关键词
Diagnostic code; Accuracy; Undernutrition; Administrative data; Sensitivity; Specificity; INTERNATIONAL-CLASSIFICATION; NUTRITIONAL CARE; CHARLSON INDEX; MALNUTRITION; EUROPE; PERFORMANCE; PREVALENCE; GUIDELINES; VALIDITY; DISEASES;
D O I
10.1016/j.nut.2018.03.051
中图分类号
R15 [营养卫生、食品卫生]; TS201 [基础科学];
学科分类号
100403 ;
摘要
Objectives: Hospital administrative databases are widely used for disease monitoring. Undernutrition is highly prevalent among hospitalized patients but the diagnostic accuracy of undernutrition coding in administrative data is poorly known. This study examined the diagnostic accuracy of undernutrition coding in administrative hospital discharge databases. Methods: A retrospective cross-sectional study was conducted using 2013 and 2014 administrative data of the Internal Medicine Unit of the Lausanne University Hospital (n = 2509). Two reference diagnoses were defined: Confirmed undernutrition (2002 nutrition risk screening [NRS-2002] score >3 plus body mass index [BMI] < 18.5 kg/m(2)) and probable undernutrition (NRS-2002 > 3 plus any prescribed nutritional management plus BMI >18.5 and <20 kg/m(2) if age <70 y [< 22 kg/m(2) if age >70 y]). Missing BMI values were imputed. Results: Of the 2509 eligible patients, 262 (10.4%) were classified as confirmed and 631 (25.2%) as probable undernutrition. The sensitivity, specificity, and negative and positive predictive values (and corresponding 95% confidence intervals) for undernutrition codes using confirmed undernutrition were 43.0 (37.0-49.3), 87.2 (85.8-88.6), 92.9 (91.7-94.0), and 28.2 (23.8-32.8), respectively. The corresponding values using both confirmed and probable undernutrition were 30.0 (27.2-32.9), 93.4 (92.0-94.6), 66.7 (64.7-68.7), and 75.1 (70.6-79.3), respectively. Similar findings were obtained after stratifying for sex or age groups or restricting the analysis to patients with non-missing BMI data. Conclusions: The undernutrition codes in hospital discharge data have good specificity but the sensitivity and positive predictive values are low. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:111 / 115
页数:5
相关论文
共 30 条
[1]   Accuracy of Diagnosis Codes to Identify Febrile Young Infants Using Administrative Data [J].
Aronson, Paul L. ;
Williams, Derek J. ;
Thurm, Cary ;
Tieder, Joel S. ;
Alpern, Elizabeth R. ;
Nigrovic, Lise E. ;
Schondelmeyer, Amanda C. ;
Balamuth, Fran ;
Myers, Angela L. ;
McCulloh, Russell J. ;
Alessandrini, Evaline A. ;
Shah, Samir S. ;
Browning, Whitney L. ;
Hayes, Katie L. ;
Feldman, Elana A. ;
Neuman, Mark I. .
JOURNAL OF HOSPITAL MEDICINE, 2015, 10 (12) :787-793
[2]   Hospital Malnutrition: Prevalence, Identification and Impact on Patients and the Healthcare System [J].
Barker, Lisa A. ;
Gout, Belinda S. ;
Crowe, Timothy C. .
INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2011, 8 (02) :514-527
[3]   Practices in relation to nutritional care and support-report from the Council of Europe [J].
Beck, AM ;
Balknäs, UN ;
Camilo, ME ;
Fürst, P ;
Gentile, MG ;
Hasunen, K ;
Jones, L ;
Jonkers-Schuitema, C ;
Keller, U ;
Melchior, JC ;
Mikkelsen, BE ;
Pavcic, M ;
Schauder, P ;
Sivonen, L ;
Zinck, O ;
Oien, H ;
Ovesen, L .
CLINICAL NUTRITION, 2002, 21 (04) :351-354
[4]   Food and nutritional care in hospitals:: how to prevent undernutrition-report and guidelines from the Council of Europe [J].
Beck, AM ;
Balknäs, UN ;
Fürst, P ;
Hasunen, K ;
Jones, L ;
Keller, U ;
Melchior, JC ;
Mikkelsen, BE ;
Schauder, P ;
Sivonen, L ;
Zinck, O ;
Oien, H ;
Ovesen, L .
CLINICAL NUTRITION, 2001, 20 (05) :455-460
[5]   Diagnostic criteria for malnutrition - An ESPEN Consensus Statement [J].
Cederholm, T. ;
Bosaeus, I. ;
Barazzoni, R. ;
Bauer, J. ;
Van Gossum, A. ;
Klek, S. ;
Muscaritoli, M. ;
Nyulasi, I. ;
Ockenga, J. ;
Schneider, S. M. ;
de van der Schueren, M. A. E. ;
Singer, P. .
CLINICAL NUTRITION, 2015, 34 (03) :335-340
[6]   A NEW METHOD OF CLASSIFYING PROGNOSTIC CO-MORBIDITY IN LONGITUDINAL-STUDIES - DEVELOPMENT AND VALIDATION [J].
CHARLSON, ME ;
POMPEI, P ;
ALES, KL ;
MACKENZIE, CR .
JOURNAL OF CHRONIC DISEASES, 1987, 40 (05) :373-383
[7]   Diagnosing Malnutrition: Where Are We and Where Do We Need to Go? [J].
Compher, Charlene ;
Mehta, Nilesh M. .
JOURNAL OF THE ACADEMY OF NUTRITION AND DIETETICS, 2016, 116 (05) :779-784
[8]   To screen or not to screen for adult malnutrition? [J].
Elia, M ;
Zellipour, L ;
Stratton, RJ .
CLINICAL NUTRITION, 2005, 24 (06) :867-884
[9]   Poor performance of mandatory nutritional screening of in-hospital patients [J].
Geiker, Nina Rica Wium ;
Larsen, Sisse Marie Horup ;
Stender, Steen ;
Astrup, Arne .
CLINICAL NUTRITION, 2012, 31 (06) :862-867
[10]   Charlson Index comorbidity adjustment for ischemic stroke outcome studies [J].
Goldstein, LB ;
Samsa, GP ;
Matchar, DB ;
Horner, RD .
STROKE, 2004, 35 (08) :1941-1945