Reducing Peptide Sequence Bias in Quantitative Mass Spectrometry Data with Machine Learning

被引:8
作者
Dincer, Ayse B. [1 ]
Lu, Yang [2 ]
Schweppe, Devin K. [2 ]
Oh, Sewoong [1 ]
Noble, William Stafford [1 ,2 ]
机构
[1] Univ Washington, Paul G Allen Sch Comp Sci & Engn, Seattle, WA 98195 USA
[2] Univ Washington, Dept Genome Sci, Seattle, WA 98195 USA
基金
美国国家卫生研究院;
关键词
quantitative mass spectrometry; machine learning; deep learning; neural networks; tandem mass spectrometry; HIGH-RESPONDING PEPTIDES; PROTEOTYPIC PEPTIDES; PREDICTION; MODEL;
D O I
10.1021/acs.jproteome.2c00211
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Quantitative mass spectrometry measurements of peptides necessarily incorporate sequence-specific biases that reflect the behavior of the peptide during enzymatic digestion and liquid chromatography and in a mass spectrometer. These sequence-specific effects impair quantification accuracy, yielding peptide quantities that are systematically under-or overestimated. We provide empirical evidence for the existence of such biases, and we use a deep neural network, called Pepper, to automatically identify and reduce these biases. The model generalizes to new proteins and new runs within a related set of tandem mass spectrometry experiments, and the learned coefficients themselves reflect expected physicochemical properties of the corresponding peptide sequences. The resulting adjusted abundance measurements are more correlated with mRNA-based gene expression measurements than the unadjusted measurements. Pepper is suitable for data generated on a variety of mass spectrometry instruments and can be used with labeled or label-free approaches and with data-independent or data-dependent acquisition.
引用
收藏
页码:1771 / 1782
页数:12
相关论文
共 15 条
[1]   CONSeQuence: Prediction of Reference Peptides for Absolute Quantitative Proteomics Using Consensus Machine Learning Approaches [J].
Eyers, Claire E. ;
Lawless, Craig ;
Wedge, David C. ;
Lau, King Wai ;
Gaskell, Simon J. ;
Hubbard, Simon J. .
MOLECULAR & CELLULAR PROTEOMICS, 2011, 10 (11)
[2]   Prediction of high-responding peptides for targeted protein assays by mass spectrometry [J].
Fusaro, Vincent A. ;
Mani, D. R. ;
Mesirov, Jill P. ;
Carr, Steven A. .
NATURE BIOTECHNOLOGY, 2009, 27 (02) :190-198
[3]   Comparing protein abundance and mRNA expression levels on a genomic scale [J].
Greenbaum, D ;
Colangelo, C ;
Williams, K ;
Gerstein, M .
GENOME BIOLOGY, 2003, 4 (09)
[4]   Quantitative Proteome Landscape of the NCI-60 Cancer Cell Lines [J].
Guo, Tiannan ;
Luna, Augustin ;
Rajapakse, Vinodh N. ;
Koh, Ching Chiek ;
Wu, Zhicheng ;
Liu, Wei ;
Sun, Yaoting ;
Gao, Huanhuan ;
Menden, Michael P. ;
Xu, Chao ;
Calzone, Laurence ;
Martignetti, Loredana ;
Auwerx, Chiara ;
Buljan, Marija ;
Banaei-Esfahani, Amir ;
Ori, Alessandro ;
Iskar, Murat ;
Gillet, Ludovic ;
Bi, Ran ;
Zhang, Jiangnan ;
Zhang, Huanhuan ;
Yu, Chenhuan ;
Zhong, Qing ;
Varma, Sudhir ;
Schmitt, Uwe ;
Qiu, Peng ;
Zhang, Qiushi ;
Zhu, Yi ;
Wild, Peter J. ;
Garnett, Mathew J. ;
Bork, Peer ;
Beck, Martin ;
Liu, Kexin ;
Saez-Rodriguez, Julio ;
Elloumi, Fathi ;
Reinhold, William C. ;
Sander, Chris ;
Pommier, Yves ;
Aebersold, Ruedi .
ISCIENCE, 2019, 21 :664-+
[5]   AAindex: Amino acid index database [J].
Kawashima, S ;
Kanehisa, M .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :374-374
[6]   Scoring proteomes with proteotypic peptide probes [J].
Kuster, B ;
Schirle, M ;
Mallick, P ;
Aebersold, R .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2005, 6 (07) :577-583
[7]   On the Dependency of Cellular Protein Levels on mRNA Abundance [J].
Liu, Yansheng ;
Beyer, Andreas ;
Aebersold, Ruedi .
CELL, 2016, 165 (03) :535-550
[8]   eComputational prediction of proteotypic peptides for quantitative proteomics [J].
Mallick, Parag ;
Schirle, Markus ;
Chen, Sharon S. ;
Flory, Mark R. ;
Lee, Hookeun ;
Martin, Daniel ;
Raught, Brian ;
Schmitt, Robert ;
Werner, Thilo ;
Kuster, Bernhard ;
Aebersold, Ruedi .
NATURE BIOTECHNOLOGY, 2007, 25 (01) :125-131
[9]   Abundance-based Classifier for the Prediction of Mass Spectrometric Peptide Detectability Upon Enrichment (PPA) [J].
Muntel, Jan ;
Boswell, Sarah A. ;
Tang, Shaojun ;
Ahmed, Saima ;
Wapinski, Ilan ;
Foley, Greg ;
Steen, Hanno ;
Springer, Michael .
MOLECULAR & CELLULAR PROTEOMICS, 2015, 14 (02) :430-440
[10]   Prediction of peptides observable by mass spectrometry applied at the experimental set level [J].
Sanders, William S. ;
Bridges, Susan M. ;
McCarthy, Fiona M. ;
Nanduri, Bindu ;
Burgess, Shane C. .
BMC BIOINFORMATICS, 2007, 8 (Suppl 7)