Meshless local Petrov-Galerkin method for continuously nonhomogeneous linear viscoelastic solids

被引:55
|
作者
Sladek, J [1 ]
Sladek, V
Zhang, C
Schanz, M
机构
[1] Slovak Acad Sci, Inst Construct & Architecture, Bratislava 84503, Slovakia
[2] Univ Siegen, Dept Civil Engn, D-57068 Siegen, Germany
[3] Graz Univ Technol, Inst Appl Mech, A-8010 Graz, Austria
关键词
meshless method; local weak form; correspondence principle; moving least squares interpolation; Laplace transform; functionally graded materials; viscoelasticity;
D O I
10.1007/s00466-005-0715-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A meshless method based on the local Petrov-Galerkin approach is proposed for the solution of quasi-static and transient dynamic problems in two-dimensional (2-D) nonhomogeneous linear viscoelastic media. A unit step function is used as the test functions in the local weak form. It is leading to local boundary integral equations (LBIEs) involving only a domain-integral in the case of transient dynamic problems. The correspondence principle is applied to such nonhomogeneous linear viscoelastic solids where relaxation moduli are separable in space and time variables. Then, the LBIEs are formulated for the Laplace-transformed viscoelastic problem. The analyzed domain is covered by small subdomains with a simple geometry such as circles in 2-D problems. The moving least squares (MLS) method is used for approximation of physical quantities in LBIEs.
引用
收藏
页码:279 / 289
页数:11
相关论文
共 50 条
  • [1] Meshless local Petrov-Galerkin method for continuously nonhomogeneous linear viscoelastic solids
    J. Sladek
    V. Sladek
    Ch. Zhang
    M. Schanz
    Computational Mechanics, 2006, 37 : 279 - 289
  • [2] Meshless local Petrov-Galerkin method in anisotropic elasticity
    Sladek, J
    Sladek, V
    Atluri, SN
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2004, 6 (05): : 477 - 489
  • [3] Meshless local Petrov-Galerkin method for linear coupled thermoelastic analysis
    Sladek, J.
    Sladek, V.
    Zhang, Ch.
    Tan, C. L.
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2006, 16 (01): : 57 - 68
  • [4] Meshless local Petrov-Galerkin method for plane piezoelectricity
    Sladek, J.
    Sladek, V.
    Zhang, Ch.
    Garcia-Sanche, F.
    Wuensche, M.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2006, 4 (02): : 109 - 117
  • [5] A wachspress meshless local Petrov-Galerkin method
    Barry, W
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2004, 28 (05) : 509 - 523
  • [6] The basis of meshless domain discretization: the meshless local Petrov-Galerkin (MLPG) method
    Atluri, S
    Shen, SP
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2005, 23 (1-2) : 73 - 93
  • [7] Error assessment in the meshless local Petrov-Galerkin method
    Pannachet, T
    Barry, W
    Askes, H
    COMPUTATIONAL MECHANICS, VOLS 1 AND 2, PROCEEDINGS: NEW FRONTIERS FOR THE NEW MILLENNIUM, 2001, : 989 - 994
  • [8] Treatment of Material Discontinuity in the Meshless Local Petrov-Galerkin Method
    Yuan, Xufei
    Gu, Gendai
    Zhao, Meiling
    PROCEEDINGS OF THE 2017 INTERNATIONAL CONFERENCE ON APPLIED MATHEMATICS, MODELLING AND STATISTICS APPLICATION (AMMSA 2017), 2017, 141 : 157 - 161
  • [9] Meshless local Petrov-Galerkin method with complex variables for elasticity
    Yang Xiu-Li
    Dai Bao-Dong
    Li Zhen-Feng
    ACTA PHYSICA SINICA, 2012, 61 (05)
  • [10] An elastic dynamic analysis of a nonhomogeneous moderately thick plate using the meshless local Petrov-Galerkin method
    Xia Ping
    Mao Wengui
    Hu Weijun
    MECHANICAL ENGINEERING AND GREEN MANUFACTURING, PTS 1 AND 2, 2010, : 393 - +