Optimal control of harvesting in a parabolic system modeling two subpopulations

被引:18
作者
Lenhart, SM [1 ]
Montero, JA
机构
[1] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA
[2] Univ Granada, Dept Anal Matemat, E-18071 Granada, Spain
基金
美国国家科学基金会;
关键词
optimal control; parabolic equations; existence; uniqueness; population models;
D O I
10.1142/S0218202501000982
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An optimal harvesting problem for a parabolic partial differential system modeling two subpopulations of the same species is investigated. The two subpopulations axe competing for resources. Under conditions on the smallness of the time interval and certain biological parameters, existence and uniqueness of an optimal control pair are established.
引用
收藏
页码:1129 / 1141
页数:13
相关论文
共 16 条
[1]  
ADAMS RA, 1995, PURE APPL MATH
[2]   Migration in age structured population dynamics [J].
Arino, O ;
Smith, WV .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1998, 8 (05) :905-925
[3]   Optimal control of a nonlinear elliptic population system [J].
Arino, O ;
Montero-Sánchez, JA .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2000, 43 :225-241
[4]   Study of an optimal control problem for diffusive nonlinear elliptic equations of logistic type [J].
Canada, A ;
Gamez, JL ;
Montero, JA .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1998, 36 (04) :1171-1189
[5]   Optimal control of harvesting in a nonlinear elliptic system arising from population dynamics [J].
Cañada, A ;
Magal, P ;
Montero, JA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 254 (02) :571-586
[6]  
Evans L.C., 1998, PARTIAL DIFFERENTIAL
[7]  
Fister R, 1997, HOUSTON J MATH, V23, P341
[8]  
HE H, 1994, J COMPUT APPL MATH, V52, P199
[9]  
Krylov N. V., 1987, Nonlinear elliptic and parabolic equations of the second order
[10]  
Lasiecka I., 1991, LECT NOTES CONTROL I, V164