Screening for depression in epilepsy: A model of an enhanced screening tool

被引:15
作者
Drinovac, Mihael [1 ]
Wagner, Helga [1 ]
Agrawal, Niruj [2 ,3 ,4 ]
Cock, Hannah R. [3 ,4 ]
Mitchell, Alex J. [5 ,6 ]
von Oertzen, Tim J. [4 ,7 ]
机构
[1] Johannes Kepler Univ Linz, Inst Appl Stat, A-4040 Linz, Austria
[2] St George Hosp, Dept Neuropsychiat, London, England
[3] St George Hosp, Atkinson Morley Reg Neurosci Ctr, Epilepsy Grp, London, England
[4] St Georges Univ London, London, England
[5] Univ Leicester, Dept Canc Studies & Mol Med, Leicester, Leics, England
[6] Leicestershire Partnership NHS Trust, Dept Psycho Oncol, Leicester, Leics, England
[7] Kepler Univ Hosp, Wagner Jauregg Neurosci Ctr, Dept Neurol, Linz, Austria
关键词
Human; Epilepsy; Depression; Comorbidity; Questionnaire; Screening; EMOTION THERMOMETERS; RANDOM FORESTS; VALIDATION;
D O I
10.1016/j.yebeh.2014.12.014
中图分类号
B84 [心理学]; C [社会科学总论]; Q98 [人类学];
学科分类号
03 ; 0303 ; 030303 ; 04 ; 0402 ;
摘要
Objective: Depression is common but frequently underdiagnosed in people with epilepsy. Screening tools help to identify depression in an outpatient setting. We have published validation of the NDDI-E and Emotional Thermometers (ET) as screening tools for depression (Rampling et al., 2012). In the current study, we describe a model of an optimized screening tool with higher accuracy. Methods: Data from 250 consecutive patients in a busy UK outpatient epilepsy clinic were prospectively collected. Logistic regression models and recursive partitioning techniques (classification trees, random forests) were applied to identify an optimal subset from 13 items (NDDI-E and ET) and provide a framework for the prediction of class membership probabilities for the DSM-IV-based depression classification. Results: Both logistic regression models and classification trees (random forests) suggested the same choice of items for classification (NDDI-E item 4, NDDI-E item 5, ET-Distress, ET-Anxiety, ET-Depression). The most useful regression model includes all 5 mentioned variables and outperforms the NDDI-E as well as the ET with respect to AUC (NDDI-E: 0.903; ET7: 0.889; logistic regression: 0.943). A model developed using random forests, grown by restricting the possible splitting of variables to these 5 items using only subsets of the original data for single classification, performed similarly (AUC: 0.949). Conclusions: For the first time, we have created a model of a screening tool for depression containing both verbal and visual analog scales, with characteristics supporting that this will be more precise than previous tools. Collection of a new data sample to assess out-of-sample performance is necessary for confirmation of the predictive performance. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:67 / 72
页数:6
相关论文
共 15 条
[1]   Relationship between depression and intractability of seizures [J].
Attarian, H ;
Vahle, V ;
Carter, J ;
Hykes, E ;
Gilliam, F .
EPILEPSY & BEHAVIOR, 2003, 4 (03) :298-301
[2]   Emotional and affective disturbances in patients with epilepsy [J].
Beghi, E ;
Spagnoli, P ;
Airoldi, L ;
Fiordelli, E ;
Appollonio, I ;
Bogliun, G ;
Zardi, A ;
Paleari, F ;
Gamba, P ;
Frattola, L ;
Da Prada, L .
EPILEPSY & BEHAVIOR, 2002, 3 (03) :255-261
[3]   Epilepsy and risk of suicide: a population-based case-control study [J].
Christensen, Jakob ;
Vestergaard, Mogens ;
Mortensen, Preben Bo ;
Sidenius, Per ;
Agerbo, Esben .
LANCET NEUROLOGY, 2007, 6 (08) :693-698
[4]   Identifying depression in epilepsy in a busy clinical setting is enhanced with systematic screening [J].
Friedman, David E. ;
Kung, Doris H. ;
Laowattana, Somchai ;
Kass, Joseph S. ;
Hrachovy, Richard A. ;
Levin, Harvey S. .
SEIZURE-EUROPEAN JOURNAL OF EPILEPSY, 2009, 18 (06) :429-433
[5]   Rapid detection of major depression in epilepsy: a multicentre study [J].
Gilliam, FG ;
Barry, JJ ;
Hermann, BP ;
Meador, KJ ;
Vahle, V ;
Kanner, AM .
LANCET NEUROLOGY, 2006, 5 (05) :399-405
[6]   An AUC-based permutation variable importance measure for random forests [J].
Janitza, Silke ;
Strobl, Carolin ;
Boulesteix, Anne-Laure .
BMC BIOINFORMATICS, 2013, 14
[7]   Validation of simple visual-analogue thermometer screen for mood complications of cardiovascular disease: the Emotion Thermometers [J].
Mitchell, Alex J. ;
Morgan, Joshua P. ;
Petersen, Denise ;
Fabbri, Sharon ;
Fayard, Carlos ;
Stoletniy, Liset ;
Chiong, Jun .
JOURNAL OF AFFECTIVE DISORDERS, 2012, 136 (03) :1257-1263
[8]   Can the Distress Thermometer be improved by additional mood domains? Part I. Initial validation of the Emotion Thermometers tool [J].
Mitchell, Alex J. ;
Baker-Glenn, Elena A. ;
Granger, Lorraine ;
Symonds, Paul .
PSYCHO-ONCOLOGY, 2010, 19 (02) :125-133
[9]   Screening for depression in epilepsy clinics. A comparison of conventional and visual-analog methods [J].
Rampling, Jeremy ;
Mitchell, Alex J. ;
Von Oertzen, Tim ;
Docker, James ;
Jackson, Jemima ;
Cock, Hannah ;
Agrawal, Niruj .
EPILEPSIA, 2012, 53 (10) :1713-1721
[10]  
Schubart J, 2014, J PSYCHOSOC ONCOL