On the relationship between He II λ304 prominences and the photospheric magnetic field

被引:49
作者
Wang, YM [1 ]
机构
[1] USN, EO Hulburt Ctr Space Res, Res Lab, Washington, DC 20375 USA
关键词
Sun : chromosphere; Sun : filaments; Sun : magnetic fields; Sun : photosphere; Sun : prominences; Sun : UV radiation;
D O I
10.1086/322495
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
As observed in He II lambda 304 images recorded at high cadence, quiescent prominences resemble long-lived systems of jets, in which chromospheric material streams continually from one footpoint area to another. To further clarify the physical nature of the source regions, we have compared He II lambda 304 images of on-disk prominences (filaments) with line-of-sight magnetograms, employing data from the Extreme-Ultraviolet Imaging Telescope (EIT) and the Michelson Doppler Imager (MDI) on the Solar and Heliospheric Observatory (SOHO). The quiescent filaments lie within channels separating the opposite-polarity network fields on each side and containing relatively weak magnetic flux of both polarities. The sideways extensions ("barbs") and endpoints of the filaments overlie smaller scale neutral lines, where opposite-polarity flux elements are in close contact and mutual cancellation occurs. From the chirality rules of Martin et al., we deduce that the barbs are rooted in minority-polarity flux on the "wrong" side of the large-scale photospheric neutral line, and we propose a mechanism for their formation based on the concept of supergranular diffusion. Our results support earlier suggestions that magnetic reconnection accompanying photospheric flux cancellation is the dominant mechanism for injecting mass into quiescent prominences.
引用
收藏
页码:456 / 465
页数:10
相关论文
共 33 条
[1]   The thermal nonequilibrium of prominences [J].
Antiochos, SK ;
MacNeice, PJ ;
Spicer, DS .
ASTROPHYSICAL JOURNAL, 2000, 536 (01) :494-499
[2]  
Aulanier G, 1999, ASTRON ASTROPHYS, V342, P867
[3]   COMPLETE DETERMINATION OF THE MAGNETIC-FIELD VECTOR AND OF THE ELECTRON-DENSITY IN 14 PROMINENCES FROM LINEAR POLARIZATON MEASUREMENTS IN THE HE-I-D-3 AND H-ALPHA LINES [J].
BOMMIER, V ;
DEGL'INNOCENTI, EL ;
LEROY, JL ;
SAHALBRECHOT, S .
SOLAR PHYSICS, 1994, 154 (02) :231-260
[4]   High-resolution Hα observations of proper motion in NOAA 8668:: Evidence for filament mass injection by chromospheric reconnection [J].
Chae, J ;
Denker, C ;
Spirock, TJ ;
Wang, HM ;
Goode, PR .
SOLAR PHYSICS, 2000, 195 (02) :333-346
[5]   Prominence formation by localized heating [J].
Dahlburg, RB ;
Antiochos, SK ;
Klimchuk, JA .
ASTROPHYSICAL JOURNAL, 1998, 495 (01) :485-490
[6]   EIT: Extreme-ultraviolet imaging telescope for the SOHO mission [J].
Delaboudiniere, JP ;
Artzner, GE ;
Brunaud, J ;
Gabriel, AH ;
Hochedez, JF ;
Millier, F ;
Song, XY ;
Au, B ;
Dere, KP ;
Howard, RA ;
Kreplin, R ;
Michels, DJ ;
Moses, JD ;
Defise, JM ;
Jamar, C ;
Rochus, P ;
Chauvineau, JP ;
Marioge, JP ;
Catura, RC ;
Lemen, JR ;
Shing, L ;
Stern, RA ;
Gurman, JB ;
Neupert, WM ;
Maucherat, A ;
Clette, F ;
Cugnon, P ;
VanDessel, EL .
SOLAR PHYSICS, 1995, 162 (1-2) :291-312
[7]   Magnetic helicity generation by solar differential rotation [J].
DeVore, CR .
ASTROPHYSICAL JOURNAL, 2000, 539 (02) :944-953
[8]   MORPHOLOGICAL RELATIONSHIPS IN CHROMOSPHERIC HALPHA FINE STRUCTURE [J].
FOUKAL, P .
SOLAR PHYSICS, 1971, 19 (01) :59-&
[9]   Formation of a solar filament channel [J].
Gaizauskas, V ;
Zirker, JB ;
Sweetland, C ;
Kovacs, A .
ASTROPHYSICAL JOURNAL, 1997, 479 (01) :448-&
[10]  
HARVEY KL, 1985, AUST J PHYS, V38, P875