Uniform Convergent Solution of Singularly Perturbed Parabolic Differential Equations with General Temporal-Lag

被引:22
作者
Negero, Naol Tufa [1 ]
Duressa, Gemechis File [2 ]
机构
[1] Wollega Univ, Dept Math, Nekemte, Ethiopia
[2] Jimma Univ, Dept Math, Jimma, Ethiopia
来源
IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE | 2022年 / 46卷 / 02期
关键词
Singular perturbation; Parabolic convection-diffusion problems; Time delay; B-spline collocation nonstandard finite difference method; Boundary layer; CONVECTION-DIFFUSION PROBLEMS; NUMERICAL SCHEME; MODEL;
D O I
10.1007/s40995-021-01258-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we presented a parameter uniform B-spline collocation nonstandard finite difference scheme for a class of singularly perturbed parabolic one-dimensional convection-diffusion problems with a time delay on a uniform mesh. When the delay parameter is smaller than the perturbation parameter, the delayed term is expanded in Taylor series and a B-spline collocation tridiagonal nonstandard finite difference scheme is developed. Here, the proposed finite difference scheme is unconditionally stable and is first-order convergent in the temporal direction and second-order accurate in the spatial direction. When the delay parameter is larger than the perturbation parameter, a special type of mesh is used for the temporal variable so that the delay lie on the nodal points and B-spline collocation nonstandard finite difference scheme is developed. The scheme is also unconditionally stable and is first-order convergent in the temporal direction and second-order accurate in the spatial direction. We carried out numerical simulations to verify the theoretical results.
引用
收藏
页码:507 / 524
页数:18
相关论文
共 40 条
[11]  
Hall C., 1968, J. Approximation Theory, V1, P209, DOI DOI 10.1016/0021-9045(68)90025-7
[12]   Numerical analysis of a mathematical model for propagation of an electrical pulse in a neuron [J].
Kaushik, Aditya ;
Sharma, Mohan D. .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2008, 24 (04) :1055-1079
[13]   Error estimates for a class of partial functional differential equation with small dissipation [J].
Kaushik, Aditya .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 226 :250-257
[14]   A parameter uniform difference scheme for parabolic partial differential equation with a retarded argument [J].
Kaushik, Aditya ;
Sharma, K. K. ;
Sharma, Manju .
APPLIED MATHEMATICAL MODELLING, 2010, 34 (12) :4232-4242
[15]  
Kuang Yang., 1993, Delay Differential Equations with Applications in Population Dynamics
[16]   A parameter-uniform numerical scheme for the parabolic singularly perturbed initial boundary value problems with large time delay [J].
Kumar, Devendra ;
Kumari, Parvin .
JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2019, 59 (1-2) :179-206
[17]  
Kumar K., 2019, Trends in Mathematics, P67, DOI [DOI 10.1007/978-3-030-01123-9_8, 10.1007/978-3-030-01123-98, DOI 10.1007/978-3-030-01123-98]
[18]  
Mickens R.E, 1993, Nonstandard Finite Difference Models of Differential Equations, DOI [10.1142/2081, DOI 10.1142/2081]
[19]  
Natr, 2002, PHOTOSYNTHETICA, V40, P414
[20]  
Negero N., 2021, J MATH MODELING, P1