Uniform Convergent Solution of Singularly Perturbed Parabolic Differential Equations with General Temporal-Lag

被引:22
作者
Negero, Naol Tufa [1 ]
Duressa, Gemechis File [2 ]
机构
[1] Wollega Univ, Dept Math, Nekemte, Ethiopia
[2] Jimma Univ, Dept Math, Jimma, Ethiopia
来源
IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE | 2022年 / 46卷 / 02期
关键词
Singular perturbation; Parabolic convection-diffusion problems; Time delay; B-spline collocation nonstandard finite difference method; Boundary layer; CONVECTION-DIFFUSION PROBLEMS; NUMERICAL SCHEME; MODEL;
D O I
10.1007/s40995-021-01258-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we presented a parameter uniform B-spline collocation nonstandard finite difference scheme for a class of singularly perturbed parabolic one-dimensional convection-diffusion problems with a time delay on a uniform mesh. When the delay parameter is smaller than the perturbation parameter, the delayed term is expanded in Taylor series and a B-spline collocation tridiagonal nonstandard finite difference scheme is developed. Here, the proposed finite difference scheme is unconditionally stable and is first-order convergent in the temporal direction and second-order accurate in the spatial direction. When the delay parameter is larger than the perturbation parameter, a special type of mesh is used for the temporal variable so that the delay lie on the nodal points and B-spline collocation nonstandard finite difference scheme is developed. The scheme is also unconditionally stable and is first-order convergent in the temporal direction and second-order accurate in the spatial direction. We carried out numerical simulations to verify the theoretical results.
引用
收藏
页码:507 / 524
页数:18
相关论文
共 40 条
[1]   A parameter-robust finite difference method for singularly perturbed delay parabolic partial differential equations [J].
Ansari, A. R. ;
Bakr, S. A. ;
Shishkin, G. I. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 205 (01) :552-566
[2]  
Arino O., 2007, DELAY DIFFERENTIAL E, V205
[3]  
Banks RB., 1993, Growth Diffusion Phenomena: Mathematical Frameworks and Applications
[4]  
Chungen L., 2021, CONSTR MATH ANAL, V3, P178
[5]  
Ciani S., 2020, CONSTR MATH ANAL, V4, P93
[6]  
Cooke K., 1998, Canad. Appl. Math. Quart., V6, P321
[7]   Uniformly convergent hybrid numerical scheme for singularly perturbed delay parabolic convection-diffusion problems on Shishkin mesh [J].
Das, Abhishek ;
Natesan, Srinivasan .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 271 :168-186
[8]  
Duressa GF, 2021, J MATH MODEL, P1
[9]   DELAY EFFECTS AND DIFFERENTIAL DELAY EQUATIONS IN CHEMICAL-KINETICS [J].
EPSTEIN, IR .
INTERNATIONAL REVIEWS IN PHYSICAL CHEMISTRY, 1992, 11 (01) :135-160
[10]   ε-Uniformly convergent numerical scheme for singularly perturbed delay parabolic partial differential equations [J].
Gowrisankar, S. ;
Natesan, Srinivasan .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2017, 94 (05) :902-921