Social Network Polluting Contents Detection through Deep Learning Techniques

被引:0
|
作者
Martinelli, Fabio [1 ]
Mercaldo, Francesco [1 ,2 ]
Santone, Antonella [1 ]
机构
[1] Natl Res Council Italy CNR, Inst Informat & Telemat, Pisa, Italy
[2] Univ Molise, Dept Biosci & Terr, Pesche, IS, Italy
来源
2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN) | 2019年
关键词
text classification; social network; word embedding; machine learning; deep learning; transfer learning; supervised learning; Twitter; NEURAL-NETWORK; SPAM;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Nowadays social networks are widespread used not only to enable users to share comments with other users but also as tool from which is possible to extract knowledge. As a matter of fact, social networks are increasingly considered to understand the opinion trend about a politician or related to a certain event that occurred: in general social networks have been proved useful to understand the public opinion from both governments and companies. In addition, also from the end users point of view it is difficult to identify real contents. This is the reason why in last years we are witnessing a growing interest in tools for analyzing big data gathered from social networks in order to find common opinions. In this context, content polluters on social networks make the opinion mining process difficult to browse valuable contents. In this paper we propose a method aimed to discriminate between pollute and real information from a semantic point of view. We exploit a combination of word embedding and deep learning techniques to categorize semantic similarities between (pollute and real) linguistic sentences. We experiment the proposed method on a dataset composed of real-world sentences gathered from the Twitter social network obtaining interesting results in terms of precision and recall.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] An Innovative Framework for Supporting Social Network Polluting-content Detection and Analysis
    Cuzzocrea, Alfredo
    Martinelli, Fabio
    Mercaldo, Francesco
    PROCEEDINGS OF THE 21ST INTERNATIONAL CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS (ICEIS 2019), VOL 2, 2019, : 303 - 311
  • [2] Early Depression Detection from Social Network Using Deep Learning Techniques
    Shah, Faisal Muhammad
    Ahmed, Farzad
    Joy, Sajib Kumar Saha
    Ahmed, Sifat
    Sadek, Samir
    Shil, Rimon
    Kabir, Md Hasanul
    2020 IEEE REGION 10 SYMPOSIUM (TENSYMP) - TECHNOLOGY FOR IMPACTFUL SUSTAINABLE DEVELOPMENT, 2020, : 823 - 826
  • [3] Business intelligence using deep learning techniques for social media contents
    Tarek Kanan
    Ala Mughaid
    Riyad Al-Shalabi
    Mahmoud Al-Ayyoub
    Mohammed Elbes
    Odai Sadaqa
    Cluster Computing, 2023, 26 : 1285 - 1296
  • [4] Business intelligence using deep learning techniques for social media contents
    Kanan, Tarek
    Mughaid, Ala
    Al-Shalabi, Riyad
    Al-Ayyoub, Mahmoud
    Elbes, Mohammed
    Sadaqa, Odai
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2023, 26 (02): : 1285 - 1296
  • [5] Deep Learning Techniques for Community Detection in Social Networks
    Wu, Ling
    Zhang, Qishan
    Chen, Chi-Hua
    Guo, Kun
    Wang, Deqin
    IEEE ACCESS, 2020, 8 : 96016 - 96026
  • [6] Unreliable Users Detection in Social Media: Deep Learning Techniques for Automatic Detection
    Sansonetti, Giuseppe
    Gasparetti, Fabio
    D'aniello, Giuseppe
    Micarelli, Alessandro
    IEEE ACCESS, 2020, 8 : 213154 - 213167
  • [7] Deep Learning Techniques for Diabetic Retinopathy Detection
    Qummar, Sehrish
    Khan, Fiaz Gul
    Shah, Sajid
    Khan, Ahmad
    Din, Ahmad
    Gao, Jinfeng
    CURRENT MEDICAL IMAGING, 2020, 16 (10) : 1201 - 1213
  • [8] A Review of Deep Learning Techniques for Glaucoma Detection
    Guergueb T.
    Akhloufi M.A.
    SN Computer Science, 4 (3)
  • [9] An Extensive Review of Machine Learning and Deep Learning Techniques on Network Intrusion Detection for IoT
    Walling, Supongmen
    Lodh, Sibesh
    TRANSACTIONS ON EMERGING TELECOMMUNICATIONS TECHNOLOGIES, 2025, 36 (02):
  • [10] A Comparison of Classical Versus Deep Learning Techniques for Abusive Content Detection on Social Media Sites
    Chen, Hao
    McKeever, Susan
    Delany, Sarah Jane
    SOCIAL INFORMATICS, SOCINFO 2018, PT I, 2018, 11185 : 117 - 133