Uniform Holder estimate for singularly perturbed parabolic systems of Bose-Einstein condensates and competing species

被引:50
作者
Dancer, E. N. [1 ]
Wang, Kelei [1 ]
Zhang, Zhitao [2 ]
机构
[1] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
[2] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
基金
澳大利亚研究理事会;
关键词
Singular perturbation; Free boundary problem; Regularity; Liouville theorem; UNIQUE CONTINUATION; SPATIAL SEGREGATION; EQUATIONS;
D O I
10.1016/j.jde.2011.06.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the uniform Holder continuity of solutions for two classes of singularly perturbed parabolic systems. These systems arise in Bose-Einstein condensates and in competing models in population dynamics. The proof relies upon the blow up technique and the monotonicity formulas by Almgren and Alt. Caffarelli, and Friedman. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:2737 / 2769
页数:33
相关论文
共 15 条
[1]   VARIATIONAL-PROBLEMS WITH 2 PHASES AND THEIR FREE BOUNDARIES [J].
ALT, HW ;
CAFFARELLI, LA ;
FRIEDMAN, A .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 282 (02) :431-461
[2]  
[Anonymous], 2006, Applicable Analysis
[3]  
Caffarelli L., 2005, Grad. Stud. Math., V68, DOI DOI 10.1090/GSM/068
[4]   The geometry of solutions to a segregation problem for nondivergence systems [J].
Caffarelli, L. A. ;
Karakhanyan, A. L. ;
Lin, Fang-Hua .
JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2009, 5 (02) :319-351
[5]   NONLOCAL HEAT FLOWS PRESERVING THE L2 ENERGY [J].
Caffarelli, Luis ;
Lin, Fanghua .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2009, 23 (1-2) :49-64
[6]   Uniform Holder estimates in a class of elliptic systems and applications to singular limits in models for diffusion flames [J].
Caffarelli, Luis A. ;
Roquejoffre, Jean-Michel .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2007, 183 (03) :457-487
[7]   A strong unique continuation theorem for parabolic equations [J].
Chen, XY .
MATHEMATISCHE ANNALEN, 1998, 311 (04) :603-630
[8]   Asymptotic estimates for the spatial segregation of competitive systems [J].
Conti, M ;
Terracini, S ;
Verzini, G .
ADVANCES IN MATHEMATICS, 2005, 195 (02) :524-560
[9]   A variational problem for the spatial segregation of reaction-diffusion systems [J].
Conti, M ;
Terracini, S ;
Verzini, G .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2005, 54 (03) :779-815
[10]  
Dancer E.N., T AM MATH S IN PRESS