Radiomics in Brain Tumor: Image Assessment, Quantitative Feature Descriptors, and Machine-Learning Approaches

被引:257
作者
Zhou, M. [1 ]
Scott, J. [3 ]
Chaudhury, B. [3 ]
Hall, L. [4 ]
Goldgof, D. [4 ]
Yeom, K. W. [2 ]
Iv, M. [2 ]
Ou, Y. [5 ]
Kalpathy-Cramer, J. [5 ]
Napel, S. [3 ]
Gillies, R. [3 ]
Gevaert, O. [1 ]
Gatenby, R. [3 ]
机构
[1] Stanford Univ, Stanford Ctr Biomed Informat Res, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Radiol, Stanford, CA 94305 USA
[3] Moffitt Canc Res Ctr, Dept Radiol, Tampa, FL USA
[4] Univ S Florida, Dept Comp Sci & Engn, Tampa, FL USA
[5] Massachusetts Gen Hosp, Dept Radiol, Boston, MA USA
基金
美国国家卫生研究院;
关键词
CONVOLUTIONAL NEURAL-NETWORKS; COMPUTER-AIDED DETECTION; RADIATION-THERAPY; TRUE PROGRESSION; GLIOBLASTOMA; MR; CANCER; SURVIVAL; PSEUDOPROGRESSION; DIFFUSION;
D O I
10.3174/ajnr.A5391
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Radiomics describes a broad set of computational methods that extract quantitative features from radiographic images. The resulting features can be used to inform imaging diagnosis, prognosis, and therapy response in oncology. However, major challenges remain for methodologic developments to optimize feature extraction and provide rapid information flow in clinical settings. Equally important, to be clinically useful, predictive radiomic properties must be clearly linked to meaningful biologic characteristics and qualitative imaging properties familiar to radiologists. Here we use a cross-disciplinary approach to highlight studies in radiomics. We review brain tumor radiologic studies (eg, imaging interpretation) through computational models (eg, computer vision and machine learning) that provide novel clinical insights. We outline current quantitative image feature extraction and prediction strategies with different levels of available clinical classes for supporting clinical decision-making. We further discuss machine-learning challenges and data opportunities to advance radiomic studies.
引用
收藏
页码:208 / 216
页数:9
相关论文
共 81 条
  • [1] The Potential of Radiomic-Based Phenotyping in PrecisionMedicine A Review
    Aerts, Hugo J. W. L.
    [J]. JAMA ONCOLOGY, 2016, 2 (12) : 1636 - 1642
  • [2] Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
    Aerts, Hugo J. W. L.
    Velazquez, Emmanuel Rios
    Leijenaar, Ralph T. H.
    Parmar, Chintan
    Grossmann, Patrick
    Cavalho, Sara
    Bussink, Johan
    Monshouwer, Rene
    Haibe-Kains, Benjamin
    Rietveld, Derek
    Hoebers, Frank
    Rietbergen, Michelle M.
    Leemans, C. Rene
    Dekker, Andre
    Quackenbush, John
    Gillies, Robert J.
    Lambin, Philippe
    [J]. NATURE COMMUNICATIONS, 2014, 5
  • [3] Computer-Aided Detection of Metastatic Brain Tumors Using Automated Three-Dimensional Template Matching
    Ambrosini, Robert D.
    Wang, Peng
    O'Dell, Walter G.
    [J]. JOURNAL OF MAGNETIC RESONANCE IMAGING, 2010, 31 (01) : 85 - 93
  • [4] [Anonymous], 2006, Machine Learning
  • [5] [Anonymous], P IEEE INT C COMP VI
  • [6] [Anonymous], 2011, BIG DATA NEXT FRONTI
  • [7] [Anonymous], SPIE P
  • [8] [Anonymous], 2015, IEEE COMP SOC C COMP
  • [9] [Anonymous], SPIE P
  • [10] [Anonymous], MED IMAGE COMPUTING