Seizure Prediction using Convolutional Neural Networks and Sequence Transformer Networks

被引:14
作者
Chen, Ryan [1 ]
Parhi, Keshab K. [1 ]
机构
[1] Univ Minnesota, Dept Elect & Comp Engn, Minneapolis, MN 55455 USA
来源
2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC) | 2021年
基金
美国国家科学基金会;
关键词
D O I
10.1109/EMBC46164.2021.9629732
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Accurate seizure prediction is important for design of wearable and implantable devices that can improve the lives of subjects with epilepsy. Such implantable devices can be used for closed-loop neuromodulation. However, there are many challenges that inhibit the performance of prediction models. One challenge in accurately predicting seizures is the nonstationarity of the EEG signals. This paper presents a patient-specific deep learning approach to improve predictive performance by transforming EEG data before extracting features for seizure prediction. In the proposed approach, a Sequence Transformer Network (STN) is first used to learn temporal and magnitude invariances in EEG data. The proposed method further computes the short-time Fourier transform (STFT) of the transformed EEG signals as input features to a convolutional neural network (CNN). A k-out-of-n post-processing method is used to reduce the significance of isolated false positives. The approach is tested using intracranial EEG from the American Epilepsy Society Seizure Prediction Challenge dataset. Leaveone-out cross validation is used to evaluate the model. The proposed model achieves an overall sensitivity of 82%, false prediction rate of 0.38/hour, and average AUC of 0.746.
引用
收藏
页码:6483 / 6486
页数:4
相关论文
共 10 条
  • [1] Abbaszadeh B, 2019, IEEE ENG MED BIO, P3442, DOI [10.1109/EMBC.2019.8856286, 10.1109/embc.2019.8856286]
  • [2] A systematic study of the class imbalance problem in convolutional neural networks
    Buda, Mateusz
    Maki, Atsuto
    Mazurowski, Maciej A.
    [J]. NEURAL NETWORKS, 2018, 106 : 249 - 259
  • [3] Discriminating preictal and interictal states in patients with temporal lobe epilepsy using wavelet analysis of intracerebral EEG
    Gadhoumi, Kais
    Lina, Jean-Marc
    Gotman, Jean
    [J]. CLINICAL NEUROPHYSIOLOGY, 2012, 123 (10) : 1906 - 1916
  • [4] Kingma DP, 2015, C TRACK P
  • [5] Klonowski Wlodzimierz, 2009, Nonlinear Biomed Phys, V3, P2, DOI 10.1186/1753-4631-3-2
  • [6] Convolutional neural networks for seizure prediction using intracranial and scalp electroencephalogram
    Nhan Duy Truong
    Anh Duy Nguyen
    Kuhlmann, Levin
    Bonyadi, Mohammad Reza
    Yang, Jiawei
    Ippolito, Samuel
    Kavehei, Omid
    [J]. NEURAL NETWORKS, 2018, 105 : 104 - 111
  • [7] Oh J., 2018, ARXIV180806725CSSTAT
  • [8] Seizure prediction with spectral power of EEG using cost-sensitive support vector machines
    Park, Yun
    Luo, Lan
    Parhi, Keshab K.
    Netoff, Theoden
    [J]. EPILEPSIA, 2011, 52 (10) : 1761 - 1770
  • [9] Low-Complexity Seizure Prediction From iEEG/sEEG Using Spectral Power and Ratios of Spectral Power
    Zhang, Zisheng
    Parhi, Keshab K.
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, 2016, 10 (03) : 693 - 706
  • [10] Zhang ZS, 2015, IEEE ENG MED BIO, P5748, DOI 10.1109/EMBC.2015.7319698