L-TAUTOLOGY THEORY IN LATTICE-VALUED PROPOSITIONAL LOGIC

被引:0
作者
Pan, Xiaodong [1 ]
Xu, Kaijun [2 ]
Qin, Keyun [2 ]
Xu, Yang [2 ]
机构
[1] SW Jiaotong Univ, Sch Math, Chengdu 610031, Sichuan, Peoples R China
[2] Southwest Jiaotong Univ, Intelligent Control Dev Ctr, Sichuan 610031, Peoples R China
来源
COMPUTATIONAL INTELLIGENCE: FOUNDATIONS AND APPLICATIONS: PROCEEDINGS OF THE 9TH INTERNATIONAL FLINS CONFERENCE | 2010年 / 4卷
关键词
Tautology; L-tautology; lattice-valued logic; FUZZY-LOGIC; EVALUATED SYNTAX; INFERENCE; SEMANTICS; CALCULI;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper is an attempt to develop lattice-valued propositional logic. From the viewpoint of L-fuzzy set, we generalized the notion of tautology to L-tautology, some properties about L-tautology are obtained, the relations among different kinds of L-tautologies is investigated.
引用
收藏
页码:105 / +
页数:3
相关论文
共 19 条
[1]  
[Anonymous], 1999, Mathematical Principles of Fuzzy Logic, DOI DOI 10.1007/978-1-4615-5217-8
[2]  
[Anonymous], MATHWARE SOFTCOMPUTI
[3]  
[Anonymous], 2003, STUD FUZZINESS SOFT
[4]   FUZZY MODELS OF 1ST-ORDER LANGUAGES [J].
DINOLA, A ;
GERLA, G .
ZEITSCHRIFT FUR MATHEMATISCHE LOGIK UND GRUNDLAGEN DER MATHEMATIK, 1986, 32 (04) :331-340
[5]  
GOGUEN JA, 1967, J MATH ANAL ITS APPL, V18
[6]   Omitting types in fuzzy logic with evaluated syntax [J].
Murinova, Petra ;
Novak, Vilem .
MATHEMATICAL LOGIC QUARTERLY, 2006, 52 (03) :259-268
[7]   Fuzzy logic with countable evaluated syntax revisited [J].
Novak, Vilem .
FUZZY SETS AND SYSTEMS, 2007, 158 (09) :929-936
[8]  
[潘小东 Pan Xiaodong], 2005, [西南交通大学学报, Journal of Southwest Jiaotong University], V40, P842
[9]   Lattice implication ordered semigroups [J].
Pan, Xiaodong ;
Xu, Yang .
INFORMATION SCIENCES, 2008, 178 (02) :403-413
[10]   FUZZY LOGIC .1. MANY-VALUED RULES OF INFERENCE [J].
PAVELKA, J .
ZEITSCHRIFT FUR MATHEMATISCHE LOGIK UND GRUNDLAGEN DER MATHEMATIK, 1979, 25 (01) :45-52