Note on a Geometric Isogeny of K3 Surfaces

被引:23
作者
Clingher, Adrian [1 ]
Doran, Charles F. [2 ]
机构
[1] Univ Missouri, Dept Math & Comp Sci, St Louis, MO 63108 USA
[2] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
关键词
D O I
10.1093/imrn/rnq230
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper establishes a correspondence relating two specific classes of complex algebraic K3 surfaces. The first class consists of K3 surfaces polarized by the rank-16 lattice H circle plus E-7 circle plus E-7. The second class consists of K3 surfaces obtained as minimal resolutions of double covers of the projective plane branched over a configuration of six lines. The correspondence underlies a geometric 2-isogeny of K3 surfaces.
引用
收藏
页码:3657 / 3687
页数:31
相关论文
共 25 条
[1]  
Alexeev V., 2006, MSJ MEMOIRS, V15
[2]  
Beauville A., 1996, COMPLEX ALGEBRAIC SU
[3]  
Clingher A., 2010, ARXIV10043503
[4]  
Clingher A., 2010, K3 SURFACES ASS 6 LI
[5]   On K3 surfaces with large complex structure [J].
Clingher, Adrian ;
Doran, Charles F. .
ADVANCES IN MATHEMATICS, 2007, 215 (02) :504-539
[6]   Modular invariants for lattice polarized K3 surfaces [J].
Clingher, Adrian ;
Doran, Charles F. .
MICHIGAN MATHEMATICAL JOURNAL, 2007, 55 (02) :355-393
[7]  
CORAY DF, 1988, P LOND MATH SOC, V57, P25
[8]  
Demazure M., 1980, LECT NOTES MATH, V777
[9]  
Dolgachev I., 1996, J. Math. Sci, V81, P2599, DOI [10.1007/BF02362332, DOI 10.1007/BF02362332]
[10]   Correspondences between K3 surfaces [J].
Galluzzi, F ;
Lombardo, G .
MICHIGAN MATHEMATICAL JOURNAL, 2004, 52 (02) :267-277